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Abstract 
In this essay we make four interrelated points. First, we reiterate previous arguments (Kleinberg 
et al 2015) that forecasting problems are more common in social science than is often 
appreciated. From this observation it follows that social scientists should care about predictive 
accuracy in addition to unbiased or consistent estimation of causal relationships. Second, we 
argue that social scientists should be interested in prediction​ even if they have no interest in 
forecasting per se​. Whether they do so explicitly or not, that is, causal claims necessarily make 
predictions; thus it is both fair and arguably useful to hold them accountable for the accuracy of 
the predictions they make. Third, we argue that prediction, used in either of the above two 
senses, is a useful metric for quantifying progress. Important differences between social science 
explanations and machine learning algorithms notwithstanding, social scientists can still learn 
from approaches like the Common Task Framework (CTF) which have successfully driven 
progress in certain fields of AI over the past 30 years (Donoho, 2015). Finally, we anticipate that 
as the predictive performance of forecasting models and explanations alike receives more 
attention, it will become clear that it is subject to some upper limit which lies well below 
deterministic accuracy for many applications of interest (Martin et al 2016). Characterizing the 
properties of complex social systems that lead to higher or lower predictive limits therefore 
poses an interesting challenge for computational social science.  
 
 
"In general, we look for a new law by the following process. First, we guess it ... Then we 
compute the consequences of the guess, … to see what it would imply and then we compare 
the computation results to ... experiment or experience [or] with observations to see if it works. 
If it disagrees with experiment, it’s wrong. In that simple statement is the key to science. It 
doesn’t make any difference how beautiful your guess is, it doesn’t make any difference how 
smart you are who made the guess, or what his name is… If it disagrees with experiment, it’s 
wrong. That’s all there is to it.” 
 
Richard Feynman, 1964 
 
  

 



 
 

Prediction vs. explanation: A false dichotomy 
Social science traditionally distinguishes between prediction and explanation. Explanation is 
viewed as being primarily concerned with the identification of a causal mechanism, with the 
purpose of developing understanding and potentially designing interventions to change 
outcomes. Prediction, on the other hand, is viewed as simply forecasting future events and 
outcomes without changing them, often for the purpose of incorporating that information into 
some other plan or decision making process. For example, a highly accurate forecast of rain 
would enable people to carry an umbrella only when it would be needed. Less trivially, the ability 
to accurately predict the likelihood of disruptive events such as wars, sectarian conflicts, 
investment surges or mass migrations may be critical to strategic planning processes ​(Mitchell 
2009; Guston 2014; Selin and VanDeveer 2007)​. By contrast, if the purpose is to avert or 
otherwise impact these outcomes, an understanding of cause and effect may be essential.  
 
Kleinberg et al (2015) formalize the distinction between prediction/forecasting and 
explanation/causation as follows. If Y is some outcome of interest (the weather, in their 
example) which depends on some intervention X and is the associated payoff functionπ (X , )Y  
for some actor, then we can quantify the effect of the intervention through the following 
derivative: 

 
These two terms represent the two different pathways through which an intervention might 
affect the payoff (see Fig. 1 for examples from Kleinberg et al 2015). The first corresponds to a 
mechanism that directly changes the payoff, but not the outcome (e.g., superstitions aside, 
bringing an umbrella doesn't affect the chance of rain, but it can prevent you from getting wet). 
This is what we might call a "pure forecasting" task, because it doesn't require understanding 
the process that causes rain, but only a reliable forecast of whether it will rain or not. The 
second term corresponds to a different pathway, where the intervention changes the outcome, 
which in turn alters the payoff (e.g., performing a rain dance is presumed to save dying crops 
only if it actually causes rain). This is what we might call a "pure causation" task, where a proper 
understanding of the underlying mechanism is crucial. 
 
Clearly, this forecasting-causation dichotomy is an oversimplification. As Athey ​(2017)​ points 
out, many applied problems in social science are mixtures of the two. For example, predictive 
algorithms used by cities to assign fire and health inspectors should take into account not only 
the factors that predict that a particular establishment will be in violation of fire and/or health 
codes (a forecasting problem) but also the causal effect on an establishment’s behavior of 
receiving an inspection or not (a causation problem). Just as with targeted advertising schemes 
which rank potential customers by probability of future purchase, the most efficient allocation of 
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resources is the one that makes the highest marginal impact on behavior, a calculation that 
requires accurately predicting risk and also the causal effect of the intervention. 
 

 
Fig. 1.​​ Alternate causal pathways for “forecasting” vs. “causal” intervention, following Kleinberg 

et al. 2015. 
 
 
Nevertheless, we concur with Kleinberg et al. that forecasting problems are important in their 
own right, but have historically been underappreciated in the social sciences. Mullainathan and 
Spiess ​(2017)​ provide several such examples, including the value of predictive algorithms in 
forecasting bail decisions (Kleinberg et al. 2017), predicting teacher quality (Chalfin et al. 2017), 
identifying high-risk youth behavior (Chandler et. al 2011), and improving poverty targeting 
(McBridge et. al 2016). Each of these highlights cases in which increases in predictive 
performance have direct policy benefits, and a broader embrace of predictive modeling across 
the social sciences will surely reveal many others. 
 
A second, and less obvious, claim is that prediction remains relevant even in cases where one’s 
interest lies exclusively in the second term ; that is, with understanding causal effects of X ( ∂X

∂Y )  
on Y. Very often social scientists do espouse a lack of interest in prediction on the grounds that 
they do not care about forecasting problems (Lieberson and Lynn 2002; Hedström and Ylikoski 
2010).  Yet, as Ward et al (2010) argue, explanations that invoke causal mechanisms ​always 1

make predictions---specifically predictions about what will happen under an 
intervention---whether these predictions are articulated explicitly or not. Any explanation that 
identifies an effect of some factor X on some outcome Y--for example, that economic inequality 
increases the risk of civil war, or that psychological safety improves team performance, or that 

1 We find this tendency especially confusing since it runs directly against current norms of understanding 
causal effects in terms of comparisons of counter-factual potential outcomes: i.e. Y|X=x_1 vs Y|X=x_2 ( 
Holland 1986) or Pearl’s ​do​-calculus (cite), which also formalized causal relations in terms of Y. 
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neighborhood characteristics impact life-course outcomes--in effect makes a prediction about 
how Y should change under different values of X. Importantly, these “implied predictions” are 
not incidental to the purpose of such explanations. Indeed, assertions of the form “Y would have 
been different if X had been different” owe much of their theoretical interest (and their policy 
relevance) to their implication that “Y ​will be​ different if X is changed” in cases other than those 
in the analysis, including in the future (Watts 2014). Even when explanations are not explicitly 
asserted to be causal, the language used very often insinuates causality, as when the reader is 
encouraged to treat a series of events as the “reason” for some outcome, or to consider some 
“what if” counterfactual outcome, or to generalize beyond the specific situation under analysis. 
Again, this insinuation of causality is not incidental to the purpose of the explanation being 
offered, and very often is central to its appeal.  
 
Regardless of the details, whenever it is asserted or implied that something (Y) happened or will 
happen or might happen because of something else (X), it is important to realize that a causal 
claim is being made. From this observation it necessarily follows that a prediction is also being 
made, about how other events similar to Y, whether in the past or in the future, should be 
expected to turn out, or to have have turned out, depending on the presence or absence of X. 
To be clear, specifying the claim in a form that admits a quantifiable prediction may be 
nontrivial. Likewise, it may be prohibitively difficult to gather adequate data to test such 
predictions, even if they can be quantified, as could be the case for predictions about the 
probability of rare or unique events such as wars or presidential elections. But none of these 
practical difficulties associated with evaluating the predictive consequences of a causal 
explanation should be taken to mean that all such explanations do not have predictive 
consequences. If one is unwilling or unable to articulate these consequences and to have one’s 
explanation evaluated in terms of its ability to account for them then it is the explanation not the 
evaluation procedure that should be viewed with skepticism. In other words, just because 
Feynman’s prescription is oversimplified and difficult to implement in practice does not reduce 
its relevance to social scientific explanations in principle.  
 
Nevertheless, the idea that causal explanations are distinct from prediction, with the former 
ranking as more important than the latter, continues to have traction in various communities 
(Mitchell 2004). In part these objections may arise from the aforementioned conflation of 
“prediction” with what we have called “forecasting.” By interpreting calls to emphasize prediction 
as merely about improving forecasts, researchers can safely disassociate the business of 
producing explanations from that of evaluating their implied predictions. But in part the objection 
may stem from the standard practice of “hypothesis testing” in quantitative social science, 
wherein researchers derive from theory some prediction about the sign and significance of a 
particular regression coefficient. Because this practice follows the form of the scientific 
method--start with a theory, derive one or more hypotheses which make predictions, test these 
predictions on data, etc.--practitioners may believe that they are already evaluating the 
predictions of their theories. However, hypothesis testing as it is almost universally practiced 
does not directly test hypotheses of interest at all. Rather, one instead proposes a “null 
hypothesis” of the form “the effect predicted by my theory does not exist” and then attempts to 

 



 
 

reject this null (or “nil”) hypothesis. Although this procedure can be appropriate in instances 
where the theory itself does not make sharp predictions (and thus the rejection of “no effect” 
rules out one possible alternative), for the same reason it does not directly validate the theory 
itself, either in isolation or relative to alternative theories, a point that has been made for 
decades by statisticians, social scientists, and life scientists alike ​(Gill 1999; Johnson 1999​; 
Gigerenzer 2004​; Gelman and Carlin 2017; Lakens et al. 2018​)​. Likewise, null hypothesis 
testing offers no direct way of comparing two competing theories unless one is taken to be the 
null and the other the alternative, a procedure which is rarely adopted in practice. In other 
words, null hypothesis testing gives no way of identifying whether one explanation is better than 
another, and if so, by how much. 
 
Assuming that the goal of scientific research is (a) to generate, test, and compare competing 
explanations of observed phenomena, and (b) to provide useful advice to policy makers and 
other practitioners, predictive validation is essential for evaluating the progress of research 
programs. Adopting such a framework for the social sciences would confer three main benefits. 
First, it would highlight that some problems of interest can be addressed primarily with accurate 
forecasts, irrespective of the underlying causal mechanisms. Second, it would explicitly 
acknowledge that causal explanations necessarily generate predictions; testing those 
predictions would provide a robust and generalizable way of assessing the quality of these 
explanations. And third, it would facilitate direct comparison of competing theories and models 
to provide a clear sense of how our collective understanding of social science phenomena has 
progressed over time. 
 
Using prediction to evaluate explanations 
We now turn to the question of how, precisely, prediction should be used to evaluate 
explanations. There are many ways of measuring predictive performance, the most common 
being R​2​, or the fraction of the variance “explained” by a model. Others include mean average 
error (MAE), root mean squared error (RMSE), area under the “receiver operating curve” (AUC), 
accuracy (the fraction of correct labels), precision (the fraction of positive labels that are true 
positives), recall (the fraction of true positives that are positively labeled), and F1 score (the 
harmonic mean of precision and recall).  
 
For the special case of analyzing a dichotomous treatment, a simple option is to focus on effect 
sizes in place of p-values. For example, measures such as Cohen's d (Cohen 1988) are 
increasingly used in medicine, psychology, and other domains (Coe 2002; Sullivan and Feinn 
2012; Wasserstein, et. al 2016). This shift to effect sizes provides several benefits, enabling 
meta-analyses that combine results from different studies on the same topic and allowing for 
comparisons between competing factors and theories. Although perhaps not obvious, effect 
sizes are useful precisely because they are themselves a measure of predictive performance. 
Indeed, there is a one-to-one mapping between Cohen's d for dichotomous treatments and 
predictive measures such as R​2​ (Bruce 1998). Placing emphasis on either measure stands in 
contrast with many published studies that present tables of estimated model coefficients and 
p-values but pay little or no attention to the corresponding R​2​ values to assess how much of the 
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variance in outcomes these models explain. This is akin to ignoring effect sizes and looking only 
at which effects are non-zero. 
 
The plethora of performance metrics is both a benefit and a liability. On the one hand, different 
prediction tasks are intrinsically suited to different metrics. For example, accuracy is appropriate 
for balanced classification tasks (where the number of positive and negative cases is equal), but 
can be highly misleading for imbalanced tasks. MAE or RMSE may be more informative than R​2 
for when the magnitude of error is important but R​2​ may be more appropriate when comparing 
accuracy across tasks that involve different scales. Given the vast range of questions posed by 
the social sciences, it is therefore helpful to have many measures of predictive performance 
from which to choose. 
 
On the other hand, the flexibility to choose different metrics for the same prediction task can 
yield apparently different performances even in the absence of any underlying difference in real 
accuracy. Indeed it is simple to show that by switching between regression and classification 
and by choosing different metrics for each, one can reach qualitatively different conclusions 
about predictive performance even while using the same underlying model on the same data 
(Hofman et al. 2017). This is especially problematic given issues of publication bias, wherein 
outsized importance is placed on the discovery of positive results while null findings are largely 
ignored. As a result, myopically focusing on prediction without a grounding in explanation can 
lead researchers to put the cart before the horse, searching for a prediction problem to which 
they can declare “success” instead of using prediction in service of furthering our understanding 
of how the world works. Absent a causal understanding of the world, predictive models may 
conclude that playing basketball makes people taller, or ashtrays cause cancer (Shapiro 2005, 
p. 16; Cartwright and Hardie 2012, p. 50.). For predictive performance to be a useful metric for 
comparing theories or assessing progress, therefore, it is first necessary to reach agreement on 
the specific prediction problems and evaluation metrics that are appropriate for a given research 
question.  
 
A final consideration is that when studies do discuss predictive measures, they often do so only 
for the data on which the model was fit. This amounts to postdiction, or “explaining after the 
fact”, which often generates explanations that work only for the particular dataset under study 
but fail to generalize to future observations. Indeed, it is possible to increase the complexity of a 
model until its predictions perfectly match already observed outcomes, but doing so does not 
imply we have achieved a perfect model of the phenomenon being studied; it merely means that 
we have found another way to represent the data we have collected. Thankfully, this problem is 
easily dealt with by adhering to Feynman’s recipe: not only should we make a guess (or 
prediction), but we should check this guess against new data (that we had not seen prior to 
making the guess). In machine learning, this is referred to as focusing on ​generalization, ​or 
out-of-sample, ​error to avoid ​overfitting​. Ideally this is done by making predictions for future 
data, but can be approximated using only historical data that has already been collected. The 
procedure, known as cross-validation, involves splitting a dataset into two parts: one that is 
used only to fit the model (referred to as the training set) and another that is used only to assess 

 



 
 

its performance (the test set). Selecting the model that minimizes error on the test set (instead 
of the training set) avoids the problem of overfitting, and reporting the test set error gives a 
reliable approximation for how well we expect the model to perform in the future, provided the 
underlying data generating process remains the same ​(Janeksela 1982)​.  
 
 
Limits to prediction 
Assuming social scientists choose to evaluate explanations in terms of out-of-sample predictive 
performance, two related questions naturally arise.  
 

1. In any given context and for any given research question, how accurate can we expect 
our predictions to be? Setting aside practical difficulties such as missing or biased data, 
measurement error, or ignorance of the underlying model, that is, how accurately can 
some outcome of interest be predicted ​in principle​, given constraints around the data 
available for the task? The definitive upper boundary of predictive accuracy is perfect 
prediction (R² = 1, MSE = 0); however, in complex systems in general, and in the social 
world in particular, empirical predictions are typically well below this limit ​(Goel et al. 
2010; Bakshy et al. 2011; Glaeser, Sacerdote, and Scheinkman 1996; Martin et al. 2016; 
Kleinberg, Liang, and Mullainathan 2016)​. To what extent can we can expect that 
predictions will continually improve, given time, effort, and resources? At what point does 
the marginal return on additional data/model complexity/effort become zero? 

2. How does this upper limit to predictiability, assuming one exists, vary across contexts 
and research questions? For example, it is presumably an easier task to predict the 
lifetime box office revenue for a feature film the week after the opening weekend than it 
is a year in advance; correspondingly, one might expect that the best possible prediction 
also depends on how long in advance the prediction is made. Likewise, in some cases it 
is easier to make predictions about average outcomes than it is about individual events 
(e.g. predicting average wealth of an entire cohort of individuals vs. individual life 
outcomes, or predicting a student’s average GPA in high school compared to their GPA 
in only 9th grade) and in some cases the reverse applies (e.g. predicting which songs an 
individual will like based on their history of song listens vs. predicting hits songs for an 
entire market).  
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Fig. 2.​​ Hypothetical limit to predictive performance. Empirical models (X) show diminishing 
returns to modeling complexity and/or effort, implying a theoretical upper limit to predictive 
accuracy that is bounded away from deterministic accuracy (R​2​=1). The gap between the 

best-available empirical model and the theoretical limit is the “modeling gap,” whereas the gap 
between the theoretical limit and R​2​=1 is the “explanation gap,” where the latter implies that 

some variance is intrinsic and cannot be explained.  
 
A clearer understanding of the limits of prediction could facilitate and/or guide progress when 
researchers are most concerned with their absolute success in prediction improvement. If the 
research team is close to the known limit, there may be a limited return on invested effort to 
improve prediction.  As a result, this would suggest that researchers should focus other aspects 
of the problem at hand, such as consolidating high-performing predictive models into new 
theory, or testing the suitability of predictive models for prescriptive action and control. 
Conversely, if the research team is far from the known or expected limit, efforts to improve 
prediction are justified.  Likewise, policy makers could decide whether or not to invest limited 
resources into efforts for improving predictions, or choose to focus on developing strategies for 
interventions that are robust to uncertainties ​(Raynor 2007; Watts 2011; Mintzberg 1994; 
Lempert, Popper, and Bankes, 2003)​  This would include the development of flexible plans to 
adapt to uncertainties that cannot be reduced further.  
 
 
Establishing a predictive limit for a given domain 
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Given a prediction task with its underlying social system, is there an inherent limit to how well 
we can predict, and if so what is it?  To our knowledge little is known that can answer this 
question in any general sense. Perhaps the domain in which this question has been broached 
most explicitly is in human mobility studies that leverage a combination of smart-phone data and 
social media traces ​(Cuttone, Lehmann, and González 2018; Song et al. 2010)​. Another area in 
which predictive performance across studies has been a focus of concern is with respect to 
predicting retweet cascade size on Twitter ​(Bakshy et al. 2011; Martin et al. 2016)​. Although 
both sets of studies suggest that some fundamental limit exists, neither provides a clear answer 
to what it might be even in the specific context under consideration.  
 
We propose three approaches for establishing upper limits to predictive performance: 
 

1. Reviews of the existing literature​​. Take R²s (or equivalent) from the literature and plot 
them against various characteristics of the model and data, such as the number of 
included features, sample size, statistical approach, etc. A major impediment to this 
approach is that in the social sciences, many studies do not report model performance, 
thus is can be impossible to assess without reproducing the analysis. Another is that 
even in fields like computer science where it is common to report model performance, 
different authors may choose to report different performance metrics or to choose 
different prediction tasks (e.g. regression vs. classification), both of which also 
complicate efforts to make comparisons across studies ​(Hofman, Sharma, and Watts 
2017)​. Looking forward, both problems could be addressed by encouraging researchers 
to a) adopt standardized reporting procedures, which could potentially comprise a 
“basket” of measures and b) make their data and code available for other researchers to 
verify and extend. 
 

2. Mass collaborations​​. Social scientists could adapt the “Common Task Framework” that 
is popular in AI and machine learning communities ​(Donoho 2017)​. An example of the 
CTF applied to a social science problem is the ​(“Fragile Families Challenge” n.d.)​(FFC), 
a Netflix-style “prize contest” was based on a large, longitudinal data set (the ​Fragile 
Families and Child Wellbeing Study​) that has followed a cohort of nearly 5,000 children 
from birth through adolescence (Kindel et al. 2018). The “challenge” part comprised an 
open solicitation to researchers of any discipline and seniority to submit predictive 
models of individual-level outcomes (e.g. grit, GPA, material hardship, etc.) from the 
most recent wave of data, which at the time had been collected but not yet made public. 
Over 400 participants, ranging from undergraduate machine learning students to full 
professors of sociology, economics, and political science submitted entries, either as 
individuals or in teams, over the course of several months. Although in principle this 
model of mass collaboration could be applied to any longitudinal social dataset, the 
nature of social data encounters complications such as protection of data-subject privacy 
and autonomy ​(Lundberg et al. 2018)​ and absence of machine readable metadata that 
are less problematic for more traditional AI applications (Kindel et al. 2018). Another 
challenge is how to incentive large numbers of researchers to collaborate on a single 
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problem, although recent large-scale collaborations in psychology (​https://osf.io/wx7ck/​, 
https://psysciacc.org/​) are encouraging.  
 

3. Derive theoretical limits from models​​. Another possible approach to establishing an 
upper limit to predictive accuracy is to show that such a limit exists in a theoretical model 
of the system. For example, Song et al ​(2010)​ proposed that when an individual divides 
his or her time among N locations, the predictive performance for any algorithm is 
bounded above by Fano’s inequality, which in turn depends on the entropy S of the 
individual’s location: individuals with high entropy divide their time relatively evenly 
among N locations and are relatively unpredictable whereas individuals with low entropy 
are the opposite. In the case analyzed by Song et al, individuals spent an average of 
70% of their time at their most visited location for each hour of the day (at night the 
number was 90%); thus had relatively low entropy and high maximum predictability (over 
90%). In the context of Twitter cascadest, Martin et al. ​(2016)​ used simulations to show 
that under certain idealized assumptions, the maximum R​2​ for any model predicting 
cascade size would depend sensitively on (a) the heterogeneity of the underlying 
content and (d) measurement error. Although promising, we note that neither of these 
approaches applies generally to complex systems; thus the existence of some 
theoretical limit to predictive accuracy for any particular system remains, to our 
knowledge, an open question.  

 
 
Factors that affect predictive limits across domains 
Assuming that some general theoretical framework for describing the limits to prediction for any 
given system could be developed, what are the key elements that any such framework would 
have to incorporate? Although we regard this exercise as a major open research  suggest three 
sets of features that may determine predictive performance in a given setting: 1) prediction type, 
2) available data, 3) features inherent to the system of interest.  
 
First, the “type” of prediction may vary along at least three dimensions, each of which might limit 
predictive accuracy.  

1. Time lag between prediction and outcome​. Predicting the outcome of a presidential 
election or the box office revenue of a feature film is clearly more difficult a year in 
advance of the event in question (election day or opening day respectively) than it is a 
day in advance. Conversely, predictions of school performance for children based on 
prior classroom behavior may be less noisy over long intervals than over short ones 
(Alexander, Entwisle, and Dauber 1993)​. Regardless, the time interval between when a 
prediction is made and the outcome in question is likely an important factor in 
determining the upper limit of predictive performance.  

2. Routine vs. rare events​. In some domains (e.g. credit card defaults, click-through rates 
on display ads) predictive models can benefit from large amounts of comparable data, 
whereas at in other domains (e.g. the next financial crisis) the events in question are 
arguably unique.  
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3. Individual vs. aggregate outcomes​. Outcomes for individual people may be highly 
stochastic, and hence even best-possible predictions may be of limited accuracy. By 
contrast, predictions about whole categories or populations of people (e.g. in cross 
country comparisons) may benefit from averaging of individual-level errors and hence 
allow for much higher accuracy in principle. Likewise, predictions about changes in 
distributions (e.g. inequality as a function of increasing social influence ​(Salganik, Dodds, 
and Watts 2006)​) may be subject to weaker limits than predictions about the position of 
individual entities in those distributions.  

 
Second, the volume, quality, and relevance of data that is available can limit predictive 
accuracy.  Many predictions are difficult because available data are too difficult or expensive to 
sample (historically this has applied to social network data). Others are difficult because the 
data, even if obtainable, is too noisy, biased, or  indicates some proxy of the desired outcome 
rather than the outcome itself (e.g. communication frequency as a proxy for tie strength, 
gregariousness as a proxy of interpersonal influence).  
 
Third, inherent features of the underlying system can impact predictability. Factors such as 
nonlinearity, stochasticity, interdependency of units, and multiplicity of scales, types and 
interactions all contribute to system complexity, which may in turn limit predictability ​(Weaver 
1948; Watts 2011)​  Finally, a factor that is unique to social systems is “performativity” 
(MacKenzie and Millo 2003)​: that systems comprising people may react to predictions about 
systems in ways that either reinforce the prediction ​(Merton 1948)​ or negate it (cf. the so-called 
Lucas critique ​(Lucas 1976)​).  
 
 
Conclusion 
Throughout this paper we have argued that prediction and explanation should be viewed as a 
complements, not substitutes, when studying social scientific phenomena. In particular, 
prediction has traditionally been undervalued in the social sciences, and the field would benefit 
from adopting tools and techniques from predictive modeling. This holds for both "pure 
forecasting" problems and for "pure causation” problems alike. As others have pointed out 
(Kleinberg et al. 2015; Mullainathan and Spiess 2017), prediction is beneficial in the "pure 
forecasting" sense simply because high-quality forecasts allow one to plan for future events, 
provided that the assumptions and scope of the model(s) used remain valid for the considered 
circumstances. But prediction is also useful in "pure causation" contexts because all 
explanations make predictions, and explicitly testing these predictions provides a 
straightforward way of evaluating the corresponding explanations. Predictive validation of social 
science models, such as focusing on effect sizes and out-of-sample predictive performance, 
provides a better framework for assessing and comparing models than the standard practice of 
null hypothesis testing. 
 
That said, predictive validation is not a panacea. For predictive performance to be a meaningful 
way of comparing theories or assessing progress, it is first necessary to reach agreement on 
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how to operationalize a prediction task corresponding to a given research question. This 
includes a clear articulation of the underlying task, including domain, scope, and evaluation 
criteria. Without this, it becomes difficult to compare the results of one study with the next, 
defeating the purpose of the framework. We make several recommendations to avoid this issue 
and to maximize the value of predictive validation for furthering our understanding of the social 
scientific phenomena. The first is systematic reviews of the literature to compare the predictive 
performance of existing models where possible, with the adoption of standardized reporting and 
open data and code to enable such investigations going forward (e.g., see Ward et al. 2010). 
For settings in which such comparisons cannot be made, we recommend the common task 
framework for mass collaborations on problems of mutual interest, as was recently employed by 
the Fragile Families Challenge to enable over a hundred teams to work together to better 
predict and understand future outcomes for disadvantaged children. 
 
Finally, we note that adopting these practices would likely reveal certain limits in our ability to 
predict social events and outcomes. Studying these limits is itself an important topic, as a proper 
understanding of predictive limits would inform the investment of scientific attention and 
resources. We provide several dimensions on which to characterize predictive limits, including 
the type of prediction being made, features of the data available for the problem, and inherent 
aspects of the system being studied. Characterizing how and why these properties lead to 
higher or lower predictive limits poses an interesting challenge for the field of computational 
social science. 
 
Taken together, we believe that following these recommendations for increased attention to 
prediction in the social sciences would improve the utility of resulting explanations, enabling new 
capabilities in planning and policy and furthering our understanding of how people behave and 
interact. 
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