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Abstract

Recent advances in the development of large language models are rapidly changing how online ap-
plications function. LLM-based search tools, for instance, offer a natural language interface that can
accommodate complex queries and provide detailed, direct responses. At the same time, there have been
concerns about the veracity of the information provided by LLM-based tools due to potential mistakes or
fabrications that can arise in algorithmically generated text. In a set of online experiments we investigate
how LLM-based search changes people’s behavior relative to traditional search, and what can be done to
mitigate overreliance on LLM-based output. Participants in our experiments were asked to solve a series
of decision tasks that involved researching and comparing different products, and were randomly assigned
to do so with either an LLM-based search tool or a traditional search engine. In our first experiment, we
find that participants using the LLM-based tool were able to complete their tasks more quickly, using
fewer but more complex queries than those who used traditional search. Moreover, these participants
reported a more satisfying experience with the LLM-based search tool. When the information presented
by the LLM was reliable, participants using the tool made decisions with a comparable level of accuracy
to those using traditional search; however we observed overreliance on incorrect information when the
LLM erred. Our second experiment further investigated this issue by randomly assigning some users
to see a simple color-coded highlighting scheme to alert them to potentially incorrect or misleading in-
formation in the LLM responses. Overall we find that this confidence-based highlighting substantially
increases the rate at which users spot incorrect information, improving the accuracy of their overall
decisions while leaving most other measures unaffected. Together these results suggest that LLM-based
information retrieval tools have promise for increasing the productivity of people engaged in decision
tasks, and highlights the opportunity of communicating uncertainty to help people know when to do
further research.

1 Introduction

Recent advances in artificial intelligence (AI), specifically in large language models (LLMs), are changing
the tools that billions of people use in their daily lives. One of the first applications to be transformed was
the search engine. ChatGPT, an LLM chatbot, was released on November 30, 2022, and by February 2023,
Microsoft and Google announced the upcoming availability of LLM-based search engines and began a rapid
rollout with Microsoft ending its waitlist for Bing Chat on May 4, 2023.

From a user experience perspective, traditional web search and LLM-based search differ in a number
of ways, each having their own advantages and disadvantages. When using traditional web search, users
typically issue relatively succinct queries (Jansen et al. 2000; Silverstein et al. 1999) and are presented with a
list of hyperlinks to and snippets from web pages containing relevant reference information. There are several
benefits of this style of information retrieval. First, traditional search allows rather direct access to source
material through hyperlinks. Second, traditional search enables users to see convergence or disagreement
among distinct sources of information through the different references on a results page. Third, traditional
search is explicitly optimized to return authoritative results (Brin 1998) and provides additional cues about
the reliability of information, for example through the domains and publishers of different results (e.g.,
information from the Library of Congress might be considered more trustworthy than one from an unknown
domain).
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At the same time, there are some drawbacks to the traditional web search process. While it is convenient
to have access to reference material from different sources, synthesizing information from them can be
challenging and time consuming. Whereas relevant information is sometimes presented in the snippets or
“instant answers” on a search result page, users often have to click through to several different results and
search within those respective pages to find pertinent information. In addition, verbose or complex queries
can often lead to poor search results (Bendersky and Croft 2008; Gupta and Bendersky 2015), and given
that many real-world decision tasks are complex, this can result in users needing to break down a task into a
series of simpler queries (Jiang et al. 2014). Lastly, it can be a technical challenge for search engines to retain
context among sequences of such queries within a complex search session (Finkelstein et al. 2001; Lawrence
2000).

LLM-based search has a different set of strengths and weaknesses. In terms of strengths, LLM-based
search offers a natural language interface than can handle complex queries and return detailed, direct re-
sponses. This includes the ability to extract details from within many different references and synthesize
potentially complex information across them. LLM-based search also lends itself to retaining more context
that traditional search, allowing users to engage in a conversational exchange to refine and follow up on a
sequence of queries.

At the same time, LLM-based search currently faces a number of challenges. LLMs are known to have
issues with “fabrication” or “hallucination” in which they generate plausible sounding but factually inaccu-
rate sequences of text (Maynez et al. 2020). This is particularly worrisome in the context of using LLMs for
web search, with the concern that fabrications might lead to overreliance on incorrect search results if users
simply assume that what they are shown is always correct. Furthermore, compared with traditional search,
LLM-based search offers fewer reliable cues for users to gauge the accuracy of information. Responses may
lack hyperlinks to source materials, which users rely on to verify statements. Even when external links are
provided, they are not as prominent as in traditional web search, often appearing as subtle footnotes rather
than a full-page list, and there can be discrepancies between the content of LLM-generated responses and
the sources they cite (N. F. Liu et al. 2023a).

How will the differences between traditional and LLM-based search affect people’s every day decision
making? LLM-based search could offer substantial benefits, providing an easier-to-use interface that speeds
up complex tasks to help people accomplish their goals more quickly or free up time for them to aquire more
information. At the same time, fabrications in LLM-generated results could mislead people, and so while
they might complete tasks more quickly, they might also make sub-optimal decisions based on inaccurate
information.

In what follows, via a large randomized experiment, we empirically test how LLM-based search tools
affect decision making and propose and test interventions to mitigate overreliance on erroneous LLM-based
responses. Participants in our experiments were asked to solve a series of decision tasks that involved
researching and comparing different products, and were randomly assigned to do so with either an LLM-
based search tool or a traditional search engine. In our first experiment, we find that participants using
the LLM-based tool were able to complete their tasks more quickly, using fewer but more complex queries
than those who used traditional search. Moreover, these participants reported a more satisfying experience
with the LLM-based search tool. When the information presented by the LLM was reliable, participants
using the tool made decisions with a comparable level of accuracy to those using traditional search, however
we observed overreliance on incorrect information when the LLM erred. Our second experiment further
investigated this issue by randomly assigning some users to see a simple color-coded highlighting scheme to
alert them to potentially incorrect or misleading information in the LLM responses. Overall we find that
this confidence-based highlighting substantially increases the rate at which users spot incorrect information,
improving the accuracy of their overall decisions while leaving most other measures unaffected. Together
these results suggest that LLM-based information retrieval tools have promise for increasing the productivity
of people engaged in decision tasks, and highlights the opportunity of communicating uncertainty to help
people know when to scrutinize or further verify LLM output.
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2 Related Work

In this work we measure how people make consumer decisions using a novel search tool that, holding all else
constant, allows random assignment to traditional search or LLM-based search. While LLM-based search is
a very recent innovation, this work has connections to past research the effects of generative AI on knowledge
work and the rich literature on how people use search engines.

Noy and Zhang 2023 conducted an online experiment to evaluate the impact of LLM-based writing assis-
tants on worker productivity and associated measures. The participants were assigned tasks that simulated
real work activities, such as writing press releases, brief reports, and emails. Experienced professionals in
corresponding fields evaluated the participants’ work and found that the AI assistant improved productivity
and enhanced the quality of writing in several ways.

Brynjolfsson et al. 2023 explored the influence of generative AI on productivity in the customer service
sector by investigating the deployment of a GPT-based chat assistant. They discovered that it positively
impacted productivity, especially for lower-skilled workers, and resulted in other beneficial outcomes (e.g.,
fewer escalations). Dell’Acqua et al. 2023 executed a controlled experiment with consultants at Boston
Consulting Group, where they showed increased productivity for certain types of tasks, with more gains for
lower skilled workers. Conversely, they also showed accuracy drops for tasks for which the LLM-based tools
were known to have difficulty.

In the domain of software developer productivity, Peng et al. 2023 conducted a controlled experiment
using an LLM-based coding tool (GitHub Copilot) to assess its impact on productivity. Developers who were
assigned coding tasks and randomly provided with LLM assistance completed the tasks in less than half the
time it took the control group. The study revealed that certain groups (e.g., less experienced developers)
reaped more benefits. Earlier research by Ziegler et al. 2022 suggested that the rate of acceptance of
code suggestions, rather than their actual persistence in the final code, predicts developers’ perceptions of
productivity. The findings of Peng et al. illustrate that productivity improvements can lead to significant
time savings. In a field experiment, Inwegen et al. 2023 shows the productivity gains in writing resumes
and choosing candidates, as the use of LLM-based tools made cleaner resumes, which could have eliminated
source of identification for employers, but instead made their choices more efficient.

Furthermore, our work investigates the potential overreliance on LLM-based tools when their responses
contain errors or fabrications, a phenomenon that has been well documented (N. F. Liu et al. 2023b).
Although there has been significant effort to algorithmically identify these mistakes or generate calibrated
probabilities for response correctness, most of it has focused on relatively straightforward scenarios, such as
standardized tests or similar banks of question-answer pairs (Kadavath et al. 2022; Lin et al. 2022; Yin et al.
2023). Recent research has shown promise for more complex, real-world scenarios with the use of color-coded
highlighting of LLM-generated code to help programmers direct their attention to potentially problematic
output (Vasconcelos et al. 2023). In our study, we adapt this approach to LLM-based search, using color-
coded highlighting to alert users to potentially misleading information in LLM-generated responses.

This paper builds on a comprehensive literature on how people use search and adapt their search behavior
as the technology evolves, where LLMs are the latest of many disruptions. Bates 1989 introduced models of
online search, importantly focusing not merely on what people were beginning to do, but also how the skills
of users co-evolved with the interface. Bennett et al. 2012 offered a detailed categorization of elements of
the search session—from terms to the number of queries—that we expand upon in this paper. J. Liu 2021
surveyed a broad spectrum of research into what users aim to achieve in various search sessions. Numerous
studies have examined changes in search behavior, from the impact of new interfaces (Bates 1989) to auto-
completion features (Mitra et al. 2014). This research also builds upon the literature about the conversion
journey and how people use search engines to find products (Ramos and Cota 2008).

Our research builds upon the existing literature in several ways. First, in contrast to studying writing or
coding, we focus on how LLMs impact search and information retrieval. Second, we focus on the domain of
consumer decision making, a broad category that, to the best of our knowledge, has not yet been explored
in the literature on LLM-assisted productivity. And third, we explore solutions to mitigate overreliance in
situations where LLMs return unreliable information.
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Figure 1: Example of the same query “what is the cargo space of a 2020 jeep wrangler” in (left) Bing’s
traditional search on May 15, 2023 and (right) Bing’s conversational search on May 15, 2023.

3 Domain and Research Questions

The domain we investigate in this work is product research by consumers. Search engines play a vital role in
what is called the conversion journey for goods and services, that is, the process by which consumers move
from interest in a product category to a consideration set, a final product purchase, and even post-purchase
activities like seeking support or choosing accessories. In a simple model, consumers begin with an interest
in a product category and use search engines to gather preliminary information. They navigate in and out
of the search engine as they explore different products. Those who opt to continue the journey move closer
and closer to points of purchase, often found through search engines. Because of its integral connection to
conversion journeys, search advertising has grown into a substantial industry, having revenues of $84 billion
in 2022 and making up the largest revenue share among all internet advertising forms (IAB 2023).

In particular, we focus on researching the purchase of a Sports Utility Vehicle (SUV). Figure 1 provides
screenshots of a traditional search engine results page and how a currently-running LLM-based search tool,
Bing Chat, responds to queries about product dimensions. In both panels the query was “what is the
cargo space of a 2020 jeep wrangler?” In the left panel, Bing’s traditional search provides a mixture of
advertisements, organic results that link to relevant webpages, and highlighted “instant answers” that come
from a snippet of a linked website. In the right panel, using Bing’s chat-based search, conversational instant
answers appear in natural language, with detailed information generated via an LLM-based summary of
relevant webpages.

Suppose someone was in the market for an SUV that offered ample cargo space (to transport packages
in) but with minimum total length (to facilitate parking). How might they go about searching for a vehicle
that maximizes this ratio of cargo space to total length? Looking at data from a traditional search engine
(Table A1), we see that people often search for one vehicle at a time and information on one dimension (e.g.,
cargo space) at a time. Perhaps our hypothetical searcher for a high volume, short length SUV might issue
a series of simple queries when using a traditional search engine. A series of 1 product and 1 dimension
searches could, for example, be: “jeep wrangler total cargo space” in one query and “jeep wrangler length”
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in another, followed by some calculations to figure out the ratio of cargo space to length.
How might the search experience differ with LLM-enabled search tools? In this environment, a user

might instead simply issue a complex, natural language query that directly addresses the decision they are
looking to make. For instance, when choosing between two SUVs, a person could issue a complex query like
“Which vehicle has a larger cargo space to length ratio, a Jeep Wrangler or a Hyundai Santa Fe?” That
said, two key open questions remain: (how quickly) will users adapt to this new style of search, and what
happens if the LLM response contains mistakes or fabrications?

To gain insight into these questions, we conducted two online experiments in which participants were
randomly assigned to complete a consumer product research task using either an LLM-based search tool or
a traditional search tool. We designed these experiments to focus on the following questions:

• Research question 1 (efficiency): How will task completion time and the number (and complexity)
of queries issued differ between participants in the LLM search condition as opposed to the traditional
search condition?

• Research question 2 (accuracy): How will the accuracy of decisions differ between participants in
the LLM search condition as opposed to the traditional search condition?

• Research question 3 (perceptions): How will the user experience and perceived reliability of results
differ between participants in the LLM and traditional search conditions?

• Research question 4 (confidence and errors): How will participants handle mistakes in the LLM
responses with and without cues about the confidence reported information?

4 Experiment 1

We designed a task in which participants assume the role of running an urban delivery service (Figure 2a).
In this role, they are looking to purchase a vehicle to meet their business needs and are choosing between
two SUVs. To capture common criteria for choosing a vehicle for deliveries (ability to hold many packages
and parking flexibility), we defined the main metric for choosing a vehicle as the cargo space to total length
ratio. Cargo space in this case is defined as the maximum amount of space behind the driver’s seat, with
all other seats folded down, and total length is defined as the exterior length of the vehicle. Therefore, a
higher cargo space to total length ratio would translate to a vehicle that is better suited to meet the delivery
service business needs. This design ensures that there is both a correct answer to each task participants are
given, and provides them with clear criteria to be used in making their decisions.

Participants were invited to complete a series of five of the above defined tasks, where the goal for each task
was to determine the best option from a randomly generated vehicle pair. We varied the type of assistance
they received for their search in making their decisions in a two condition, between-subjects design. In one
condition, participants were provided with an experimental search engine built using the Bing API. Similar
to traditional search, the experimental search engine returned a series of clickable links with descriptions
based on the input query, that participants would be able to visit to get more information. In the second
condition, participants had access to an experimental LLM-based search tool, built using GPT 3.5.1. The
LLM-based tool responded in natural language to participant queries and had no conversational capabilities
to provide a tight control against the traditional search condition. No information on the technology used
behind either search tool was provided to participants, but in both conditions participants were given a quick
tutorial on how to use the corresponding tool and what to expect from it, as shown in Appendix I. Figure
2b shows the difference in responses from the search tool for the two conditions.

We imposed a limit of 10 searches per task and a limit of 1,000 characters per search. In addition,
participants had to complete at least one search to be allowed to make a decision and thus proceed to the
next task. For both conditions, participants had access to their full search history and could revisit search
tool responses at any time. After completing all available tasks, participants were also asked to complete a
brief survey about their experience to conclude the experiment.

1At the time these experiments were conducted, and at the time of writing, Bing did not have an API for interacting with
their LLM-based search tool, Bing Chat.

5



(a) The main task interface. Participants are asked to choose between two vehicles. Instructions on the
scenario and the metric of interest to make a decision are provided on the left, while the search tool is on
the right. A notepad on the bottom left is also available for keeping track of found information.

(b) Search tool response interface for both conditions in this experiment: the experimental AI-powered
search tool (left) and the experimental search engine (right).

Figure 2: Screenshots of the interface for Experiment 1.
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The LLM-based search tool was issued the following pre-prompt in order to provide a consistent experience
for participants and to signal to participants that it is not a conversational tool: “You are a search engine to
be used for finding facts about motor vehicles and doing math. If you are given a query about the features
of a commercial car, truck, or SUV, do your best to answer it. If you are given a query that involves doing
math, do your best to answer it. If you are given a query that seems like it’s trying to refer to a previous
conversation, respond with ’Sorry, I do not have the ability to refer to information from past questions or
answers.’ Otherwise respond with ’Sorry, that does not seem like a relevant query. Please try again.’ Show
your work.” This pre-prompt was not visible to participants.

In order to increase the chances that participants in the LLM-based tool condition would see a case
on which the LLM-based tool reports erroneous information, we set the last item to be identical for all
participants and to involve a vehicle with which the LLM-based tool tends to report the incorrect amount of
cargo space (the 2020 Toyota 4Runner). In this particular case the LLM-based tool is prone to confuse the
cargo space with the seats up for the cargo space with the seats down, thus reporting that the SUV with the
largest cargo space (with seats down, as specified in the instructions) actually has the smallest cargo space.
Participants in both conditions saw this item, in the same position (task 5).

We recruited 90 U.S. based participants from Amazon Mechanical Turk. For qualifications, we required
at least 2500 HITs approved with a 99% minimum approval rate, along with an additional Masters system
qualification. Participants were paid $4 for completing the experiment, with no performance bonuses.

4.1 Results for Experiment 1

Efficiency. As shown in Figure 3a, participants took less time to complete the task in the LLM-based
search condition relative to the traditional search condition, a pattern which is apparent as early as the first
question. In both conditions we see a learning effect where participants are slower in the first task compared
to subsequent tasks. Participants are simultaneously learning about the task and the domain, while also
learning about the functionality of the tool they are using. In addition to the time to respond being less in
the LLM-based search condition, the variance was also lower.

A linear mixed model fit to task duration confirms this. Specifically, we modeled the log task time
based on a random effect by participant id, controls for task number, and a fixed effect for condition (lmer:
log10(task duration full) ~ (1|worker id) + as.factor(task num) + condition). The fixed effects
estimates revealed statistically and practically significant effects of task number and condition on the log-
transformed task duration. The LLM-based condition significantly reduced the log-transformed task duration
compared to the traditional search condition (Estimate = -0.31613, SE = 0.05542, t(78) = -5.70, p < .001),
and all tasks were faster, on average, relative to the first across conditions. The estimated average task
durations, back-transformed from the log10 scale, were 3.4 minutes (95% CI [2.8, 4.1]) for the traditional
search condition and 1.6 minutes (95% CI [1.4, 1.9]) for the LLM-based search condition, a roughly 50%
reduction for the LLM-based tool.

Consistent with participants taking less time to answer with the LLM-based tool, participants issued fewer
queries with the LLM-based tool as well, as shown in Figure 3b. With the LLM-based tool, most participants
issued one query in all the tasks, while with the search tool, two queries was the most common pattern.
Interestingly, many participants in the traditional search condition navigated to product information or
comparison pages that allowed them to get both measurements for both vehicles in fewer than four, simpler
queries for one product and dimension at a time.

We tested this difference with a generalized linear model, using a Poisson link function to model the
number of queries by participant id as a random effect, task number as a control, and condition as a fixed effect
(glmer: num queries ~ (1|worker id) + as.factor(task num) + condition, family = poisson,

data = task data). The model revealed a modest but statistically significant main effect of condition on
the number of searches (Estimate = -0.26, SE = 0.12, z = -2.244, p = 0.02). The estimated average number
of queries made was 2.5 (95% CI [2.1, 3.0]) for the traditional search condition and 1.9 (95% CI [1.7, 2.2])
for the LLM-based search condition.

While participants take less time and issue fewer queries in the LLM-based search condition, they make
up for fewer queries by asking more complex queries. We average the complexity of each person by task
in Figure 4, where complexity is a number between 1 and 5 representing the number of unique elements of
interest noted in the query. This could include 0, 1, or 2 products, 0, 1, or 2 dimensions, and 0 or 1 math
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(a) Time to reach a decision by condition and task. Participants answered questions about five pairs of
vehicles, which each question counting as one task (horizontal axis). Each point represents one partici-
pant’s time taken for the task.

(b) Number of queries issued by condition and task. Each point represents one participant’s number of
queries for the task.

Figure 3: Experiment 1: Efficiency results

question for the ratio of cargo space to length. Traditional search starts up above 2 on average and goes
down, while LLM-based search starts near 3 on average and goes up. Most of the gains, in both conditions,
are between the 1st and 3rd task. Most LLM-based searches are either 2 or 5, with comparatively few at 3
or 4. Similar to the telemetry data noted in Table A1, a surprising amount of traditional search is just 1
(i.e., a single product and no dimensions). While it takes a lot of time and queries, these searchers almost
always make correct final decisions.

We tested this difference with a generalized linear model, using a Poisson link function to model the
complexity of queries by participant id as a random effect, task number as a control, and condition as
a fixed effect (glmer: complexity ~ (1|worker id) + as.factor(task num) + condition, family =

poisson, data = task data). The model revealed a statistically significant main effect of condition on the
complexity of queries (Estimate = 0.65, SE = 0.09, z = 7.38, p < 0.001). The estimated average complexity
of queries made was 1.8 (95% CI [1.6, 2.1]) for the traditional search condition and 3.4 (95% CI [3.1,3.8]) for
the LLM-based search condition.

Accuracy. Figure 5 shows accuracy by task. For the routine tasks (comparisons between 8 popular,
randomly-paired SUV models) accuracy was comparable between the two conditions, despite the traditional
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Figure 4: Complexity of queries issued by condition and task (Experiment 1). Each point represents an
average of the complexity of all of the queries issued by a given participant in a given task.

search users spending more time and issuing more queries to answer the questions. On the task designed to
be difficult (i. e., one where the LLM tends to err), accuracy drops greatly due to mistakes in the LLM’s
responses, largely due to it returning the cargo space with the second row of seats up instead of down.

To compare accuracy between conditions we fit a generalized linear model for the first four “routine” tasks.
Specifically, we modeled whether participants made the right choice for each task, accounting for random
effects by participant id, controls for the task, and a fixed effect for the condition they were assigned to (tra-
ditional vs. LLM-based search), with a logistic model (glmer: is correct decision ~ (1|worker id) +

as.factor(task num) + condition, family = binomial). The fixed effects estimates revealed no signif-
icant effect of condition on the likelihood of making a correct decision for routine tasks (z = 0.99, p = 0.33).
The estimated probabilities of making a correct decision, averaged over routine tasks, were 92.3% (95% CI
[83%, 97%]) for the traditional search condition and 95.3% (95% CI [89%, 98%]) for the LLM-based search
condition.

We used a separate generalized linear model to investigate accuracy in the final task, which was con-
structed to be challenging for the LLM. Specifically, we fit a logistic model with a fixed effect for the condition
to predict whether participants made the right choice for this task (glmer: is correct decision ˜ condition,
family = binomial). The fixed effect estimate showed that the LLM-based search condition had a significant
negative effect on the likelihood of making a correct decision compared to the traditional search condition
(Estimate = -2.72, SE = 0.79, z = -3.46, p < .001). The estimated probabilities of making a correct decision
were 93% (SE = 5%, 95% CI [76%, 98%]) for the traditional search condition and 47% (SE = 7%, 95% CI
[34%, 61%]) for the LLM-based search condition.

The previous figures hint at what happens in the final task: participants that have very complex queries
are much more likely to get the task wrong. We dissected the query stream of the 51 participants in the
LLM-based search condition: 30 of them did just one query in the final task with 23 getting the wrong
answer and 7 getting the right answer. All 23 were given the wrong answer from their query, while all 7 that
got the right got the correct answer from their query (most of the 23 that got wrong answers cut and paste
the directions into the query, while the 7 that got right answers wrote in variations of the directions). Ten
respondents had 2 queries (6 were correct and 4 wrong), and again their accuracy was directly driven by the
accuracy of the answer to their queries. Eleven participants issued 4 or more queries: all of their queries
returned correct answers and they all picked the correct option. No participant re-queried a product and
dimension after seeing a wrong answer. Again these wrong answers were always driven by the LLM-based
output giving a seats-up cargo space, rather than seats-down, giving a very small value for one particular
SUV: yet, no participant issued a further query after getting an abnormally small cargo space reading on
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Figure 5: Accuracy by condition (Experiment 1). The first four tasks are routine (comparisons between
8 popular SUV models), whereas the fifth is a comparison selected for which the LLM tends to err. Points
represent means and error bars are plus or minus one standard error.

the fifth task.

User experience and perceived reliability. In the survey at the end of the experiment we asked
participants to rate the overall search experience they were shown and to rate the reliability of the results
they were shown, both on 5 point Likert scales, with 1 being the worst and 5 being the best. As seen in
Figure 6, perceived reliability was similar between conditions and overall quite high, which is remarkable in
that many using the LLM-based tool were exposed to an erroneous response on the last task (by design).
We find no statistically significant difference in participants’ subjective ratings of the reliability of the results
they were shown (t(62.03) = 0.11, p = 0.91), indicating that users in the LLM condition who saw unreliable
information were unaware of the errors made in the LLM output. Where experience is concerned, users
strongly prefered completing the task with the LLM-based tool compared to traditional search. Overall
we find that participants strongly preferred the LLM-based search experience (with average rating of 4.41)
compared to the traditional search experience (with an average rating of 3.10), a statistically significant
difference (t(58.00) = 8.38, p < .001).

5 Experiment 2

In the previous experiment we saw that while LLM-based search helped participants arrive at decisions
faster than traditional search, these decisions were often—but not always—of the same quality. Specifically,
when the LLM response contained inaccurate information, it was difficult for participants to spot these
mistakes due to a lack of cues about the veracity of the information they were shown. We designed our
second experiment to investigate how people react to explicit cues that convey confidence in the responses
generated by the LLM, and how this affects their decision making.

This experiment was a three condition, between-subjects design where all participants were assigned to
use the same LLM-based search tool that generated the same responses to a given query.2 The only thing
that varied between conditions was how the numerical measurements in the responses were displayed visually

2We used GPT-3 in this experiment in order to have access to token probabilities, which were not available with GPT-3.5
used in the first experiment.
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Figure 6: Results on user perceptions (Experiment 1). Each smaller point represents one participant’s
response, the larger points show the mean by condition with error bars of +/- 1 SE.

via color coding. In the control condition, participants saw answers similar to those shown in Experiment 1—
plain text without any cues about the veracity of measurements in the response. In each of the two treatment
conditions, participants saw confidence-based color highlighting for numerical measurements contained in
responses. As depicted in Figure 7, the “High + low confidence” condition showed green highlighting for “high
confidence” measurements and red for “low confidence” ones, whereas the “Low confidence only” condition
showed red highlighting for “low confidence” measurements only. The highlighting of each measurement was
based on the token generation probabilities provided by GPT-3, with a generation probability of less than
or equal to 50% displayed as a red highlight and greater than 50% displayed as a green highlight.3

The procedure was nearly identical to Experiment 1. Participants completed a sequence of three decision
tasks comparing pairs of SUVs on the same criteria as in our first experiment (the ratio of total cargo
space to total length). And, as in the first experiment, all but the last task were “routine” for the LLM in
that there was a high likelihood of it returning correct information with high confidence, whereas the third
task was once again “challenging” for the LLM and likely to contain inaccurate information, but with low
confidence. We achieved this by pre-prompting the LLM with ground truth measurements for the vehicles
involved in each task on everything except the first query of the third task. This meant that the first and
second tasks largely returned accurate information with high confidence, but the first query of the third
task often contained mistakes that were highlighted as low confidence. So if participants issued queries of
the form “Which has the larger total cargo space to length ratio the 2020 Toyota 4Runner or the the 2020
GMC Terrain” on the first query of the third task, those in the treatment condition would see cues about
potentially unreliable information in the LLM response. The key question in this experiment was whether
participants in the treatment conditions would take note of these low confidence cues and issue subsequent
queries to double check the information they were shown.

We recruited 120 U.S. based participants from Amazon Mechanical Turk from a vetted pool of high-effort
workers. For qualifications, we required at least 2,500 HITs approved with a 99% minimum approval rate.
Participants were paid $5 for completing the experiment, with no performance bonuses.

3Specifically, for measurements greater than 1, we used the token probability for the whole number token only (to the left
of the decimal), whereas for measurements less than 1 we used the token probability for the decimal token only (to the right
of the decimal. For example, for “47.2” the token probability for “47” is used, whereas for “0.248” the token probability for
“248” is used.
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Figure 7: The two treatments tested in Experiment 2: highlighting of both low and high confidence
measurements (left) and only low confidence measurements (right). There was an additional control condition
in which no highlighting was shown, mirroring Experiment 1.

5.1 Results for Experiment 2

As in our first experiment, we analyzed efficiency, accuracy, and perceived experience across all conditions,
but in this experiment we compare the three different treatments of confidence highlighting in LLM-based
search instead of contrasting LLM-based search with traditional search.4 For brevity we include only top-
level results on the accuracy and perceived experience here, with the remaining results presented in the
Appendix.

Accuracy. As in our first experiment, for the routine tasks (tasks 1 and 2) where the LLM provided largely
reliable information with high confidence, accuracy was comparable between all three conditions, and quite
high (Figure 8). However, for the challenging task (task 3) where the LLM provided less reliable information
on the first query, we see a dramatic difference between conditions: while accuracy plummets to 26% in
the control condition without any confidence highlighting, accuracy in each of the treatment conditions was
substantially higher—58% for the high + low confidence condition (t(74.47) = -2.98, p < 0.01) and 53%
for the low confidence only condition (t(70.36) = -2.44, p = 0.02). In this case, both showing high and low
confidence cues and simply flagging low confidence information more than doubled accuracy in the decision
task.

As shown in additional plots in the Appendix, the increased accuracy in the treatment conditions is
largely due to participants issuing their initial query, seeing measurements flagged as low confidence, and
issuing follow-up queries to double check the information they were shown. Whereas most participants in the
control condition made a decision after one query, the majority of participants in the treatment conditions
issued two or more queries, costing them some additional time, but more often leading to the correct decision.
To narrow in on the most affected participants, 19 participants in the control condition, in both tasks 2 and
3, provided a complete query for their first query (i.e., a query that asked the comparison between both
vehicles on the ratio of both dimensions): in both tasks only 2 asked a meaningful follow-up query despite
all 19 getting the correct answer in task 2 and wrong answer in task 3. In comparison, for participants in the
treatment conditions the amount issuing complete queries as the first query jumped from 24 to 31 between
tasks 2 and 3, but the amount asking a meaningful follow-up query jumped from 5 to 15. So, the treatment
conditions had a slightly high rate of follow-up queries (relative to the control condition) even when the

4Of note, results are not directly comparable between the two experiments because Experiment 1 used GPT-3.5 whereas
Experiment 2 used GPT-3 due the need for token probabilities.
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Figure 8: Accuracy by condition (Experiment 2). The first two tasks are routine, whereas the third is
a comparison selected for which the LLM tends to err. Points represent means and error bars are plus or
minus one standard error.

answer was correct, but had a much higher rate of follow-up queries when the answer was incorrect.
Tying this back to experiment 1, the error the LLM-based search tool created was generally similar:

a very small cargo space was assigned to a large SUV (due to outputting the seats up versus seats down
measurement). In experiment 1 (and the control condition in experiment 2) participants were unlikely to
issue a follow-up query when confronted with this small cargo space alone, but in the treatment conditions
in experiment 2 participants were increasingly likely to follow up when confronted with both the small cargo
space and a confidence-based color highlighting indicating uncertainty in that datapoint.

User experience and perceived reliability. Finally, by way of perceived reliability and search experi-
ence, we find that all three conditions were rated quite favorably, and we detected no systematic difference
between them, as shown in Figure 9. The no highlighting condition had an average reliability rating of 4.1,
whereas the low confidence only condition had an average rating of 3.8 and the high + low confidence con-
dition had an average rating of 4.0. Neither difference between the treatment conditions and the control is
statistically significant (low confidence vs. no highlighting: t(75.62) = 1.90, p = 0.06; high + low confidence
vs. no highlighting: t(77.70) = 0.81, p = 0.42). Similarly, the average search experience rating was 4.2 for
the no highlighting condition, 3.9 for the low confidence only condition, and 3.7 for the high + low confidence
condition. Despite a directional trend in the estimated means, neither difference is statistically significant
(low confidence vs. no highlighting: t(71.00) = 1.31, p = 0.19; high + low confidence vs. no highlighting:
t(75.75) = 1.92, p = 0.06).

6 Discussion and Conclusion

In this work, we investigated how LLM-based enhancements in search tools affect efficiency (time and
number of queries), accuracy, user experience, and the ability to detect errors in a consumer search task.
To obtain these measures, we created a novel experimental platform that, holding all else constant, allows
participants to be randomly assigned to use traditional or LLM-based search and keeps detailed records of
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Figure 9: Results on user perceptions (Experiment 2). Each smaller point represents one participant’s
response, the larger points show the mean by condition with error bars of +/- 1 SE.

their interactions.
With respect to our first research question on efficiency, we found in Experiment 1 that having access

to an LLM-based search tool led to a substantial increase in search efficiency. Participants using the LLM-
based search tool were able to complete tasks in almost half the time compared to those using a traditional
search engine. In addition, we observed a slight reduction in the number of queries issued, accompanied
by a significant increase in query complexity. In other words, LLM-based search allowed people to reach
decisions faster and in fewer steps by issuing queries and receiving responses that more directly addressed
the decisions at hand. Regarding our third research question on perceptions, observed increases in efficiency
were accompanied by significant increases in favorable ratings for the LLM-based search tool, based on
participants’ self-reports of their overall experience.

Our second research question concerned accuracy, a dimension on which LLMs have been known to falter.
In Experiment 1, we found comparable accuracy levels between participants using LLM-based and traditional
search tools for tasks that can be considered routine for the LLM, however, we found a significant drop in
accuracy in a task that was difficult for the LLM, with almost half of the participants in this condition
making an incorrect decision. In contrast, the vast majority of participants using traditional search tools
appeared to have been able to obtain the information needed to make a correct decision. In investigating
this drop in accuracy, we found that, without appropriate cues, participants using LLM-based search were
overreliant on the tool, with the majority of people (60%) making just a single query before reaching a
decision. Even though many participants using the LLM-based search tool received incorrect information
for one of the tasks, there was no significant difference in participants’ subjective ratings of the reliability of
the results they were shown.

In Experiment 2 we proposed and tested mitigations for this issue of overreliance. In particular we
tested whether people would compensate for erroneous LLM responses when given cues about the tool’s
confidence in its own responses. When LLM responses were color-coded to reflect the confidence of the
model, people’s accuracy increased significantly. We observed that participants were much more likely to
seek further information for answers that were highlighted to reflect low confidence. Our results indicate
that although automatically generating calibrated signals of model confidence is technically challenging,
conveying such signals to users can effectively reduce overreliance.

Two open questions are how to best identify potential errors in LLM-based outputs and how to best
convey confidence to users so that they can make informed decisions. In our experiments, we used token
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probabilities to identify potentially incorrect responses. In order to do that, we had to move from GPT-3.5 to
GPT-3.0, because token probabilities were not available for GPT-3.5 and later models. Token probabilities
are a start but have drawbacks, for instance they are not perfectly correlated with error and are not necessarily
calibrated with correctness (OpenAI 2023). In ongoing research, we are investing better ways to identify
incorrect information and to convey the various types of errors that LLMs might make, and how to best
provide cues about potential errors to users.

Another area for future research is identifying other ways that LLM-based tools can communicate in-
formation about the correctness of their responses, without departing from purely text-based answers. We
incidentally found one such method when designing these experiments. Initially, we had used a meta-prompt
that did not ask the LLM to show its work—our assumption was that presenting too many numbers may
confuse a participant, increasing the likelihood of them transcribing the wrong answer. However, we quickly
realized that prompting the LLM to “show its work” provided a useful way for participants to pick up on
internal inconsistencies in the LLM-based output (an indicator of a questionable answers) and for them
to learn the basic ranges for various values (helping them better spot anomalies). Research on numerical
perspectives has found that people are more likely to spot errors in numbers when those numbers are put
into perspective with familiar objects (Barrio et al. 2016). One error the LLM-based tool made in these
experiments was reporting the seats up cargo space instead of the total cargo space in an SUV, which is
measured with the second and third rows of seats down. Because the typical total cargo space in an SUV—
which is usually around 16 feet long—is much larger than 16 cubic feet, comparing the latter to a familiar
object could help people realize that such a number is unrealistically small.

While this investigation found many benefits of LLM-based search, it also uncovered a strength of tradi-
tional search. In practice, it is rare for people to query more than one product and one dimension at a time,
despite how common it is for consumers to compare products on multiple dimensions (Payne et al. 1993). In
the first experiment, participants in all conditions were effectively encouraged to try more complex searches.
Surprisingly, participants in the traditional search condition found correct answers in fewer than four queries
on average; sometimes they found them in just one query. In our experiments this paid off because there
are many pre-generated webpages comparing particular pairs of cars on all of their dimensions, which is
quite helpful for this task. Therefore, it is possible that the introduction of LLM-based search norms may
encourage people to issue more complex queries to traditional search engines, improving their efficiency with
existing tools.

As to limitations, we explored a specific search domain and a simplified decision task. We focused on
searches involving the purchase of high cost durable goods and we expect that different scenarios involving
search will be affected in different ways. For example, while users may quickly move to more complex
queries when doing research on purchasing a car, they may continue to use simpler searches in other product
categories. Furthermore, we expect users to respond differently to cues about the correctness of information
under different conditions. For example, we observed that providing signals of the LLM’s low confidence
in certain measurements led to users doing more searches to uncover information in a car buying scenario.
However, users may be inclined to accept such pieces of information in other scenarios if they are more
interested in a range than in exact numbers (for example when searching for the number of calories in a
specific type of food). We also designed our LLM-based search tool around non-conversational version of
GPT for a tight experimental contrast with traditional search. A natural avenue for future investigation
would be to include conversational capabilities, and to explore tools such as Bing Chat that blend traditional
search and LLMs. Finally, we only considered a search scenario involving a choice among two vehicles, yet
such scenarios generally involve more options, specifications, and time. We therefore just captured a portion
of a much longer search process.

In sum, LLM-based search stands to permanently change how people search for information online. The
studies presented here suggest that search efficiency and satisfaction will likely increase, but overreliance
may become more of a concern. We hope that there will be continued innovation and testing of ways
of communicating uncertainty in AI responses so that they may be viewed with an appropriate level of
confidence. Uncertainty in answers, and in the world for that matter, can never be eliminated, but effective
means of communicating it can augment human cognition and decision making.
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A Appendix

A.1 Traditional Search Activity

The following table provides a breakdown of Bing searches for top SUVs in terms of the number of vehicles
and dimensions in the first half of 2022.

Number of Vehicles Number of Dimensions Percent of Queries Percent of Queries (w/ 1+ dimension)

1 0 63.00% –
1 1 25.18% 68.40%
1 2 9.22% 25.05%
1 3 2.00% 5.43%
1 4 0.23% 0.63%
1 5 0.01% 0.01%
1 6 0.00% 0.00%
2 0 0.18% –
2 1 0.10% 0.26%
2 2 0.07% 0.18%
2 3 0.01% 0.04%
2 4 0.00% 0.00%
3 0 0.00% –
3 1 0.00% 0.00%

Table A1: Table of number of products and dimensions in all searches for top 25 SUV in 2022. Starting
with a list of the top 25 SUV by sales in the first half of 2022 we looked at every 2022 Bing search that
included these 25 SUVs and and the top 10 most queried dimensions (e.g., cargo space, length, etc). Most
queries mention only one vehicle. If a dimension is mentioned, most queries mention only one dimension.

A.2 Experiment 1

A.2.1 Tutorial

Before starting the first task, participants in each condition were given a short tutorial on what to expect
from the search tool they would be using. Figure A.1 shows the tutorial for the traditional search condition
and Figure A.2 shows the tutorial for LLM-based search.

A.2.2 Speed and accuracy jointly

Speed and accuracy jointly. Speed and accuracy are both desirable for search engine users. Figure A.3
plots them against each other. The upper left corner of each panel represents the best performance, that
is, the most correct answers in the least amount of time. To facilitate seeing patterns despite overplotting,
a density was fit to the responses to create a heat map. The high density areas in both panels show the
participants with the LLM tools in a favorable position near the upper left. They have less variance in
time taken but more variance in accuracy, mostly owing to the additional item designed to be difficult.
Performance on this item is marked with an x showing that the vast majority of participants who did not
score all the questions correctly made an error on this item.

A.3 Experiment 2

A.3.1 Efficiency

As in our first experiment, across conditions we see a learning effect where participants take less time to
reach a decision on the second task compared to the first (Figure A.4). Using a similar linear mixed model
as in Experiment 1 to model log task duration on the routine tasks, we find that on average across all
conditions, participants take 3.3 minutes (95% CI [2.9 minutes, 3.7 minutes]) to complete the first task,
but only 1.8 minutes (95% CI [1.6 minutes, 2.0 minutes]) to complete the second task. Averaged over both
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Figure A.1: The tutorial for participants who were in the traditional search condition (Experiment 1).

of these tasks, we find that participants in the treatment conditions were slightly slower than those in the
control overall, with a statistically significant difference for high + low confidence highlighting compared
to no highlighting (t(113) = 2.09, p = 0.04) but no evidence of a systematic difference for low confidence
highlighting only (t(113) = 0.63, p = 0.53). On the third task, where participants encounter potentially
unreliable information, we see an increase in time to decision for the two treatment conditions that highlight
potentially unreliable information, but no such increase for the control without confidence highlighting (low
confidence only vs. no highlighting: t(72.79) = -2.53, p = 0.01; high + low confidence vs. no highlighting:
t(72.63) = -3.70, p < 0.001).

Analyzing the number of queries using a similar linear mixed model as in Experiment 1, we find no
evidence of systematic differences in the number of queries issued in the first two routine tasks across
conditions, with participants issuing 2.3, 2.7, and 2.7 queries per task on average for the no highlighting,
low confidence only, and high + low confidence conditions, respectively. However, in the third task we see
substantial increases in the number of queries for the two treatment conditions compared to the control (low
confidence only vs. no highlighting: 3.0 vs 2.2 queries on average, t(70.97) = -2.00, p = 0.05; high + low
confidence vs. no highlighting: 3.6 vs 2.2 queries on average, t(73.21) = -3.29, p = 0.002). This is visually
apparent in Figure A.5, as depicted in uptick in queries for the middle and right panels compared to the left
panel.
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Figure A.2: The tutorial for participants who were in the LLM-based search condition (Experiment 1).

Figure A.3: Joint view of speed and accuracy (Experiment 1). Each point represents the data from one
participant over five questions. Points are represented with an “o” if they got the challenging question correct
and a “x” if they failed to.
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Figure A.4: Time to reach a decision in Experiment 2 by condition and task. Each point represents one
participant’s number of queries for the task.

Figure A.5: Number of queries issued in Experiment 2 by condition and task. Each point represents one
participant’s number of queries for the task.
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