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Abstract 
Recent advances in large language models (LLMs) are transform-
ing online applications, including search tools that accommodate 
complex natural language queries and provide direct responses. 
There are, however, concerns about the veracity of LLM-generated 
content due to potential for LLMs to "hallucinate". In two online 
experiments, we examined how LLM-based search affects behavior 
compared to traditional search and explored ways to reduce over-
reliance on incorrect LLM-based output. Participants assigned to 
LLM-based search completed tasks more quickly, with fewer but 
more complex queries, and reported a more satisfying experience. 
While decision accuracy was comparable when the LLM was correct, 
users overrelied on incorrect information when the model erred. 
In a second experiment, a color-coded highlighting system helped 
users detect errors, improving decision accuracy without affecting 
other outcomes. These findings suggest that LLM-based search tools 
have promise as decision aids but also highlight the importance of 
effectively communicating uncertainty to mitigate overreliance. 
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1 Introduction 
Recent advances in artificial intelligence (AI), specifically in large 
language models (LLMs), are changing online tools used by billions 
of people. The search engine was one of the first applications to be 
transformed following the release of ChatGPT in November of 2022. 
By May 2023, Microsoft made its LLM-based search tool generally 
available and Google followed suit so that by the end of 2023 the 
two search engines with over 90% of global and US market share 
offered free LLM-based search [46]. 

From a user experience perspective, traditional web search and 
LLM-based search differ in a number of ways, each having their 
own advantages and disadvantages. When using traditional web 
search, users typically issue relatively succinct queries [17, 45] and 
are presented with a list of hyperlinks to and snippets from web 
pages containing relevant reference information. There are several 
benefits of this style of information retrieval. Traditional search 
allows rather direct access to source material through hyperlinks. 
In addition, traditional search enables users to see convergence 
or disagreement among distinct sources of information through 
the different references on a results page [12]. Traditional search 
is also explicitly optimized to return authoritative results [5] and 
provides additional cues about the reliability of information, for 
example through the domains and publishers of different results 
(e.g., information from the Library of Congress might be considered 
more trustworthy than one from an unknown domain). 

There are, however, also several drawbacks to the traditional 
web search process. While it is convenient to have access to ref-
erence material from different sources, synthesizing information 
from them can be challenging and time consuming. Whereas rele-
vant information is sometimes presented in the snippets or “instant 
answers” on a search result page [1, 10], users often have to click 
through to several different results and search within those respec-
tive pages to find pertinent information. In addition, verbose or 
complex queries can often lead to poor search results [3, 15, 28], 
and given that many real-world decision tasks are complex, this can 
result in users needing to break down a task into a series of simpler 
queries [16, 18, 36]. Lastly, it can be a technical challenge for search 
engines to retain context among sequences of such queries within 
a complex search session [13, 22, 27, 29]. 

LLM-based search has a different set of strengths and weak-
nesses. Among its strengths, LLM-based search provides a natural 
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language interface capable of managing complex queries and deliv-
ering detailed, direct responses inferred from massive amounts of 
data. LLM-based search also lends itself to retaining more context 
from the search session than traditional search, enabling users to 
engage in a conversational exchange to refine and follow up on a 
sequence of queries. However, LLMs are known to have issues with 
“fabrication” or “hallucination” in which they generate plausible-
sounding but factually inaccurate responses [30, 32]. This issue is 
particularly problematic in the context of LLM-based search, as it 
could foster overreliance if users assume that the information they 
are shown is always correct [8, 38]. Furthermore, compared with 
traditional search, LLM-based search offers fewer reliable cues for 
users to gauge the accuracy of information. Responses may not 
be grounded in or may not expose explicit hyperlinks to source 
materials, which users traditionally rely on to verify statements. 
Even when external links are provided, they are not displayed as 
prominently as in traditional web search and there can be discrep-
ancies between the content of LLM-generated responses and the 
sources they cite [30]. 

How will the differences between traditional and LLM-based 
search affect people’s every day decision making? On one hand, 
LLM-based search could offer substantial benefits, providing an 
easier-to-use interface that speeds up complex tasks to help people 
accomplish their goals more quickly or free up time for them to 
aquire more information. On the other hand, fabrications in LLM-
generated results could mislead people, and so while they might 
complete tasks more quickly, they might also make sub-optimal 
decisions based on inaccurate information. 

Here we present two randomized experiments to investigate 
this question. The first looks at how LLM-based search tools affect 
decision making compared to traditional search, and the second pro-
poses and tests interventions to mitigate overreliance on erroneous 
LLM-based content. Participants in our experiments were asked 
to solve a series of decision tasks that involved researching and 
comparing different products, and were randomly assigned to do so 
with either an LLM-based search tool or a traditional search engine. 
In our first experiment, we find that participants using the LLM-
based tool were able to complete their tasks more quickly, using 
fewer but more complex queries than those who used traditional 
search. Moreover, these participants reported a more satisfying 
experience with the LLM-based search tool. When the informa-
tion presented by the LLM was reliable, participants using the tool 
made decisions with a comparable level of accuracy to those using 
traditional search, however we observed overreliance on incorrect 
information when the LLM erred. Our second experiment further 
investigated this issue by randomly assigning some users to see a 
simple color-coded highlighting scheme to alert them to potentially 
incorrect or misleading information in the LLM responses. Over-
all we find that this confidence-based highlighting substantially 
increases the rate at which users spot incorrect information, im-
proving the accuracy of their overall decisions while leaving most 
other measures unaffected. Together these results suggest that LLM-
based information retrieval tools have promise for increasing the 
productivity of people engaged in decision tasks, and highlights the 
opportunity of communicating uncertainty to help people know 
when to scrutinize or further verify LLM output. 

In what follows we first review related work and then present 
the design and results of each experiment. 

2 Related Work 
In this work we explore how people use and make decisions with 
traditional vs. LLM-based search. Our research builds on prior stud-
ies in generative AI for knowledge work, as well as the extensive 
literature on how people interact with traditional search engines, 
in several key ways. First, unlike studies focused on writing or cod-
ing, we examine how LLMs impact search and question answering. 
Second, we focus on every day decision making, a broad category 
that, to our knowledge, has not yet been explored in the context of 
LLM-assisted productivity. Finally, we propose and test simple user 
interface solutions to mitigate overreliance on potentially unreliable 
text generated by LLMs. 

2.1 LLMs and Productivity 
LLMs have shown promise in enhancing producivity in several 
domains. For instance, Noy and Zhang [35] conducted an online 
experiment to evaluate the impact of LLM-based writing assistants 
on worker productivity and associated measures, finding that AI as-
sistance improved productivity and enhanced the quality of writing 
in several ways. A separate field experiment had similar findings, 
demonstrating that LLM-based tools could be used to improve re-
sume clarity and made candidate selection more efficient [48]. 

Brynjolfsson et al. [7] explored the influence of LLMs on produc-
tivity in the customer service sector by investigating the deploy-
ment of a GPT-based chat assistant. They discovered that it posi-
tively impacted productivity, especially for lower-skilled workers, 
and resulted in other beneficial outcomes (e.g., fewer escalations). In 
other work, Dell’Acqua et al. [11] executed a controlled experiment 
with consultants at Boston Consulting Group, where they showed 
increased productivity for certain types of tasks, with more gains 
for lower skilled workers. However, they also showed accuracy 
drops for tasks for which the LLM-based tools performed poorly. 

In the domain of software developer productivity, Peng et al. [41] 
conducted a controlled experiment using an LLM-based coding tool 
(GitHub Copilot) to assess its impact on productivity. Developers 
who were assigned coding tasks and randomly provided with LLM 
assistance completed the tasks in less than half the time it took the 
control group. The study revealed that certain groups (e.g., less expe-
rienced developers) reaped more benefits, whereas earlier research 
suggested that the rate of acceptance of code suggestions, rather 
than their actual persistence in the final code, predicts developers’ 
perceptions of productivity [52]. 

These studies demonstrate the widespread potential for LLM-
based tools to improve productivity, however they also raise impor-
tant questions about the reliability of LLM outputs, particularly in 
tasks where accuracy is critical. 

2.2 Hallucinations and Overreliance 
Despite the promise of LLMs for improving the speed and qual-
ity of knowledge work mentioned above, their use is not without 
risk, particularly when they produce erroneous or fabricated out-
puts [30, 32]. The problem of overreliance on AI has been a concern 
both before [31, 34, 34, 39, 43, 50] and after the current interest in 
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LLM-generated errors [21, 38, 49]. Addressing these issues requires 
both algorithmic solutions to identifying incorrect LLM-generated 
content and design interventions to communicate uncertainty to 
users to mitigate overreliance on such content [38, 49]. Conversely, 
unreliable output can have metacognitive effects on if and how 
users choose to use a system or tool [47]. 

There are many existing efforts to algorithmically infer the relia-
bility of LLM-generated content. Kadavath et al. [19] demonstrated 
that LLMs can be trained to assign confidence levels to their re-
sponses. However, these confidence levels are not always calibrated, 
particularly in more complex contexts. Similarly, Yin et al. [51] 
found that while LLMs can signal uncertainty, their ability to accu-
rately do so is still limited and context-dependent. To address this, 
Lin et al. [25] proposed training LLMs to generate text that reflects 
uncertainty as part of their output. These efforts mark important 
steps towards the goal of automatically identifying incorrect or 
unreliable information, and highlight that more work is needed to 
improve such methods. 

In parallel researchers have investigated different ways of com-
municating uncertainty around LLM-based content to users to see 
how it affects their behavior. Early work by Vasconcelos et al. [49] 
in programming explored using color-coded highlighting to direct 
attention to problematic LLM-generated code. They found that 
highlighting code based on its likelihood of being edited (edit prob-
ability) was more effective than highlighting based on the model’s 
internal confidence (generation probability). More recent work has 
explored using natural language to communicate uncertainty (e.g., 
“I’m not sure, but...”), finding that such approaches reduce overre-
liance, although the exact wording impacts effectiveness [21]. Other 
work has conducted user studies looking at more elaborate, interac-
tive systems for alerting users to potential unreliable information, 
again finding that these approaches hold promise for reducing 
overreliance on incorrect information, including HILL [23], which 
explores answering questions built off of a standardized question 
set, and RELIC [9], which involves reviewing long-form content. 

In our work, we adapt the simple uncertainty highlighting ap-
proach in [49] to LLM-based search, using color-coding to alert 
users to potentially misleading information in LLM-generated re-
sponses. Uniquely, we evaluate this technique at scale with hun-
dreds of users to investigate how it affects their decision making 
and user experience compared to using traditional search. 

2.3 The Evolution of Web Search 
The study of how users interact with search engines has a long 
history, with foundational models introduced by Bates, who high-
lighted how users’ skills co-evolve with interface design [2]. As 
interfaces have evolved, so too have user behaviors and expecta-
tions. Bennett et al. [4] offered a detailed categorization of search 
session elements—from query terms to session lengths—that inform 
our current understanding of user behavior, whereas Liu [26] pro-
vided a broad survey of what users aim to achieve in different types 
of search sessions, which remains relevant as users now encounter 
LLM-enhanced tools. Studies have also documented the impact of 
new search features, such as auto-completion and real-time sugges-
tions, on user behavior [33]. 

LLMs represent the latest in a series of technological disrup-
tions that are reshaping how users interact with search tools. Our 
research builds on this work, focusing specifically on how LLM-
based search tools change decision making processes compared to 
traditional web search. 

3 Domain and Research Questions 
We focus on the domain of online product research, specifically on 
the task of purchasing an automobile [42]. Suppose that a user is in 
the market for an SUV that offers ample cargo space (to transport 
packages) but with a small total length (to facilitate parking). How 
might they go about searching for a vehicle that maximizes this ra-
tio of cargo space to total length? Looking at data from a traditional 
search engine (see Appendix A), we see that people often search for 
one vehicle (e.g., a Jeep Wrangler) at a time and for information on 
one dimension (e.g., cargo space) at a time. A hypothetical user look-
ing for a high-volume, low-length SUV might issue a series of simple 
queries when using a traditional search engine. A series of 1 prod-
uct and 1 dimension searches could be: “jeep wrangler total cargo 
space” in one query and “jeep wrangler length” in another, followed 
by some calculations to figure out the ratio of cargo space to length. 

However, with LLM-based tools, a user might instead issue just 
one prompt that directly addresses the decision they are looking to 
make. When choosing between two SUVs, a person might make a 
head-to-head comparison [6, 20] with a complex query like “Which 
vehicle has a larger cargo space to length ratio, a Jeep Wrangler or 
a Hyundai Santa Fe?” 

We are interested in the questions of how quickly users will adapt 
to this new style of search, and how will they react if an LLM’s 
response contains incorrect information. To gain insight into these 
questions, we designed and conducted two online experiments in 
which participants were randomly assigned to complete a series of 
consumer product research tasks using either an LLM-based search 
tool or a traditional search tool. We designed these experiments to 
focus on the following questions: 

• Research question 1 (efficiency): How will task comple-
tion time and the number (and complexity) of queries issued 
differ between LLM and traditional search conditions? 

• Research question 2 (accuracy): How will the accuracy 
of decisions differ between LLM and traditional search con-
ditions? 

• Research question 3 (perceptions): How will the user 
experience and perceived reliability of results differ between 
LLM and traditional search conditions? 

• Research question 4 (confidence and errors): How will 
participants compensate for mistakes in the LLM responses 
with and without cues indicating the model’s confidence in 
its output? 

4 Experiment 1 
We designed an experiment in which participants assume the role 
of running an urban delivery service and are looking to purchase 
vehicles to meet their business needs. The experiment consisted of 
a series of tasks. For every task, participants were provided with a 
pair of SUVs and were asked to choose the one that is the best option 
for making deliveries. To capture common criteria for choosing a 
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vehicle for deliveries (ability to hold many packages and parking 
flexibility), we defined the main metric for choosing a vehicle as 
the cargo space to total length ratio. Cargo space in this case is 
defined as the maximum amount of space behind the driver’s seat, 
with all other seats folded down, and total length is defined as the 
exterior length of the vehicle. Therefore, a higher cargo space to 
total length ratio would translate to a vehicle that is better suited to 
meet the delivery service business needs. This design ensures that 
there is both a correct answer to each task participants are given, 
and provides them with clear criteria to be used in making their 
decisions. An example of such task can be seen in Figure 1a. In this 
example, participants must choose whether the Kia Sportage or the 
Toyota RAV4 is the best product for the provided scenario. 

Participants were invited to complete a series of five of the above 
defined tasks, where the goal for each task was to determine the 
best option from a randomly generated vehicle pair. We varied 
the type of assistance they received for their search in making 
their decisions in a two condition, between-subjects design. In one 
condition, participants were provided with “an experimental search 
engine” built using the Bing API. Similar to traditional search, the 
search engine returned a series of clickable links with descriptions 
based on the input query, that participants would be able to visit 
to get more information. In the second condition, participants had 
access to “an experimental AI-generated search tool”, built using 
GPT 3.5.1 The LLM-based tool responded to participant queries in 
natural language but lacked conversational capabilities. This design 
choice minimized differences to the traditional search condition, 
making it more likely that any observed effects could be attributed 
to the nature of the responses rather than the mode of interaction 
(conversational vs. non-conversational). 

Figure 1b shows the difference in responses from the search tool 
for the two conditions. No information on the technology used 
behind either search tool was provided to participants, but in both 
conditions participants were given a short tutorial on how to use 
the corresponding tool and what to expect from it, as shown in 
Appendix B.1. 

We imposed a limit of 10 searches per task and a limit of 1,000 
characters per search. In addition, participants had to complete at 
least one search to be allowed to make a decision and thus proceed 
to the next task. For both conditions, participants had access to 
their full search history and could revisit search tool responses at 
any time. After completing all available tasks, participants were 
also asked to complete a brief survey about their experience to 
conclude the experiment. 

The LLM-based search tool was given the following pre-prompt 
in order to provide a consistent experience for participants and to 
signal to participants that it is not a conversational tool: “You are 
a search engine to be used for finding facts about motor vehicles 
and doing math. If you are given a query about the features of a 
commercial car, truck, or SUV, do your best to answer it. If you are 
given a query that involves doing math, do your best to answer 
it. If you are given a query that seems like it’s trying to refer to 
a previous conversation, respond with ’Sorry, I do not have the 

1At the time these experiments were conducted, in the spring of 2023, there were no 
publicly available APIs for LLM-powered search tools such as Bing Chat or Google 
Bard/Gemini, and GPT 3.5 was the most advanced OpenAI model accessible through 
an API. 

ability to refer to information from past questions or answers.’ 
Otherwise respond with ’Sorry, that does not seem like a relevant 
query. Please try again.’ Show your work.” This pre-prompt was not 
visible to participants. To facilitate reproducibility, the tool was also 
configured to run at zero “temperature”, so that it was deterministic: 
given a particular input query it always returned the same response. 
(Frequency penalty and presence penalty were also set to zero.) 

In order to increase the chances that participants in the LLM-
based tool condition would see a case on which the LLM-based tool 
reports erroneous information, we set the last task to be identical 
for all participants and to involve a vehicle with which the LLM-
based tool tends to report the incorrect amount of cargo space (the 
2020 Toyota 4Runner). In this particular case the LLM-based tool 
is prone to confuse the cargo space with the seats up for the cargo 
space with the seats down, thus reporting that the SUV with the 
largest cargo space (with seats down, as specified in the instruc-
tions) actually has the smallest cargo space. Participants in both 
conditions saw this item in the last position (task 5), making it the 
task where overreliance was more likely to occcur [34]. We refer to 
this task as “challenging”, and refer to the other tasks as “easy”. Dur-
ing the experiment design phase, we ran automated tests to evaluate 
the LLM’s results across a range of reasonable prompts, to further 
ensure the distinction between “easy” and “challenging” tasks. 

We recruited 90 U.S. based participants from Amazon Mechanical 
Turk. For qualifications, we required at least 2,500 HITs approved 
with a 99% minimum approval rate, along with an additional Mas-
ters qualification on the Mechanical Turk platform. Participants 
were paid $4 for completing the experiment. We did not collect any 
demographic information from participants. 

4.1 Results for Experiment 1 
Efficiency. As shown in Figure 2a, participants took less time to 

complete the task in the LLM-based search condition relative to the 
traditional search condition, a pattern which is apparent as early as 
the first round. In both conditions we see a learning effect where par-
ticipants are slower in the first task compared to subsequent tasks. 
Participants are simultaneously learning about the task and the 
domain, while also learning about the functionality of the tool they 
are using. In addition to the time to respond being lower on average 
in the LLM-based search condition, the variance was also lower. 

A linear mixed model fit to task duration confirms this. Specif-
ically, we modeled the log task time based on a random effect by 
participant id, controls for task number, and a fixed effect for con-
dition (lmer: log10(task_duration_full) ~ (1|worker_id) 
+ as.factor(task_num) + condition). The fixed effects esti-
mates revealed statistically and practically significant effects of task 
number and condition on the log-transformed task duration. The 
LLM-based condition significantly reduced the log-transformed 
task duration compared to the traditional search condition (Esti-
mate = -0.31613, SE = 0.05542, t(78) = -5.70, p < .001), and all tasks 
were faster, on average, relative to the first across conditions. The 
estimated average task durations, back-transformed from the log10 
scale, were 3.4 minutes (95% CI [2.8, 4.1]) for the traditional search 
condition and 1.6 minutes (95% CI [1.4, 1.9]) for the LLM-based 
search condition, a roughly 50% reduction for the LLM-based tool. 
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(a) The main task interface. Participants are asked to choose between two vehicles. Instructions on the scenario and the 
metric of interest to make a decision are provided on the left, while the search tool is on the right. A notepad on the 
bottom left is also available for keeping track of found information. 

(b) Search tool response interface for both conditions in this experiment: the experimental AI-powered search tool (left) 
and the experimental search engine (right). 

Figure 1: Screenshots of the interface for Experiment 1. 
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(a) Time to reach a decision by condition and task. 

(b) Number of queries issued by condition and task. 

(c) Complexity of queries issued by condition and task. 

Figure 2: Experiment 1: Efficiency and complexity results. Across all three figures each point represents one participant, with 
o’s and x’s indicating correct and incorrect responses (offset slightly on the x-axis for visibility), respectively. Solid points show 
the mean outcome in each condition across tasks, with error bars showing one standard error above and below the mean. 
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Consistent with participants taking less time to answer with the 
LLM-based tool, participants issued fewer queries with the LLM-
based tool as well, as shown in Figure 2b. With the LLM-based 
tool, most participants issued one query in all the tasks, while 
with the search tool, two queries was the most common pattern. 
Interestingly, many participants in the traditional search condition 
navigated to product information or comparison pages that allowed 
them to get both measurements for both vehicles in fewer than 
four, simpler queries for one product and dimension at a time. 

We tested this difference with a generalized linear model, us-
ing a Poisson link function to model the number of queries by 
participant id as a random effect, task number as a control, and con-
dition as a fixed effect (glmer: num_queries ~ (1|worker_id) + 
as.factor(task_num) + condition, family = poisson). The 
model revealed a modest but statistically significant main effect of 
condition on the number of searches (Estimate = -0.26, SE = 0.12, z 
= -2.244, p = 0.02). The estimated average number of queries made 
was 2.5 (95% CI [2.1, 3.0]) for the traditional search condition and 
1.9 (95% CI [1.7, 2.2]) for the LLM-based search condition. 

Complexity. While participants took less time and issued fewer 
queries in the LLM-based search condition, they made up for fewer 
queries by asking more complex queries. We average the complexity 
of each person by task in Figure 2c, where complexity is a number 
between 1 and 5 representing the number of unique elements of 
interest noted in the query. This could include 0, 1, or 2 products, 
0, 1, or 2 dimensions, and 0 or 1 math question for the ratio of 
cargo space to length. Average complexity for the first task using 
traditional search was above 2 and decreased over rounds, while 
average complexity for participants with LLM-based search started 
above 3 and increased over rounds. Most of the gains, in both con-
ditions, are between the 1st and 3rd task. Most LLM-based searches 
have complexity of either 2 or 5, with comparatively few at 3 or 4. 
Similar to the telemetry data noted in Table 1, a surprising amount 
of traditional search is of complexity 1 (i.e., a single product and no 
dimensions). While it takes a lot of time and many queries, these 
participants almost always make correct final decisions. 

We tested this difference with a generalized linear model, us-
ing a Poisson link function to model the complexity of queries by 
participant id as a random effect, task number as a control, and con-
dition as a fixed effect (glmer: complexity ~ (1|worker_id) + 
as.factor(task_num) + condition, family = poisson). The 
model revealed a statistically significant main effect of condition 
on the complexity of queries (Estimate = 0.65, SE = 0.09, z = 7.38, 
p < 0.001). The estimated average complexity of queries made was 
1.8 (95% CI [1.6, 2.1]) for the traditional search condition and 3.4 
(95% CI [3.1,3.8]) for the LLM-based search condition. 

Accuracy. Figure 3 shows accuracy by task. For the first four 
easy tasks (comparisons between 8 popular, randomly-paired SUV 
models) accuracy was comparable between the two conditions, de-
spite the traditional search users spending more time and issuing 
more queries to answer the questions. On the final task, designed to 
be difficult, (i. e., one where the LLM tends to err), participants’ ac-
curacy drops greatly due to mistakes in the LLM’s responses, as the 
LLM tends to return the wrong cargo space for the Toyota 4Runner. 

Figure 3: Experiment 1: Accuracy by condition. The first four 
tasks are easy (comparisons between 8 popular SUV models), 
whereas the fifth is a comparison selected for which the LLM 
tends to err. Points represent means and error bars are plus 
or minus one standard error. 

To compare accuracy between conditions we fit a general-
ized linear model for the first four “easy” tasks. Specifically, we 
modeled whether participants made the right choice for each 
task, accounting for random effects by participant id, controls 
for the task, and a fixed effect for the condition they were 
assigned to (traditional vs. LLM-based search), with a logistic 
model (glmer: is_correct_decision ~ (1|worker_id) + 
as.factor(task_num) + condition, family = binomial). The 
fixed effects estimates revealed no significant effect of condition on 
the likelihood of making a correct decision for easy tasks (z = 0.99, 
p = 0.33). The estimated probabilities of making a correct decision, 
averaged over easy tasks, were 92.3% (95% CI [83%, 97%]) for the 
traditional search condition and 95.3% (95% CI [89%, 98%]) for the 
LLM-based search condition. 

We used a separate generalized linear model to investigate ac-
curacy in the final task, which was constructed to be challenging 
for the LLM. Specifically, we fit a logistic model with a fixed effect 
for the condition to predict whether participants made the right 
choice for this task (glmer: is_correct_decision ~ condition, family 
= binomial). The fixed effect estimate showed that the LLM-based 
search condition had a significant negative effect on the likelihood 
of making a correct decision compared to the traditional search 
condition (Estimate = -2.72, SE = 0.79, z = -3.46, p < .001). The esti-
mated probabilities of making a correct decision were 93% (SE = 
5%, 95% CI [76%, 98%]) for the traditional search condition and 47% 
(SE = 7%, 95% CI [34%, 61%]) for the LLM-based search condition. 

The previous figures hint at what happened in the final task: par-
ticipants who issued more complex queries were significantly more 
likely to select incorrect answers due to inaccurate LLM responses. 
Among the 51 participants in the LLM-based search condition, 30 
submitted only one query. Of these, 23 received incorrect responses 
from the LLM and subsequently chose the wrong answer, while 
seven received accurate responses and selected the correct answer. 
Notably, most participants in the former group copied and pasted 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Spatharioti et al. 

Figure 4: Experiment 1: Results on user perceptions. Each 
smaller point represents one participant’s response, the 
larger points show the mean by condition and error bars 
are plus or minus one standard error. 

the central question into the query box, whereas those in the latter 
group tended to rewrite the question in their own words. 

Another 10 participants submitted exactly two queries. Six re-
ceived accurate responses and chose correctly, while four received 
incorrect responses and made the wrong selection. As with the 
one-query group, their success or failure directly correlated with 
the accuracy of the LLM’s answers. 

Finally, 11 participants submitted four or more queries, all of 
which produced accurate LLM responses. Consequently, every par-
ticipant in this group selected the correct answer. Interestingly, no 
participant attempted to refine their query or re-query a specific 
product or dimension after encountering an incorrect response. 

User experience and perceived reliability. In the survey at the end 
of the experiment we asked participants to rate the reliability of the 
results they were shown and their overall search experience, both 
on 5 point Likert scales, with 1 being the worst and 5 being the 
best. As seen in Figure 4, perceived reliability was similar between 
conditions and overall quite high (4 or 5), despite the fact that many 
participants assigned to the LLM-based tool were exposed to incor-
rect information in the last task. We find no statistically significant 
difference in participants’ subjective ratings of the reliability of the 
results that they were shown (t(62.03) = 0.11, p = 0.91), suggesting 
that users in the LLM condition who saw unreliable information 
were unaware of the errors made in the LLM output. In terms of the 
overall experience, participants strongly preferred completing the 
experiment with the LLM-based tool (with average rating of 4.41) 
compared to traditional search (with an average rating of 3.10), a 
statistically significant difference (t(58.00) = 8.38, p < .001). 

Finally, analyzing the free response text that participants gave on 
the pros and cons of the LLM-based search tool revealed interesting 
insights. Overall, participants thought that the LLM-based search 
tool provided precise answers to specific queries, which was highly 
valued by participants. Additionally, they felt that the tool’s quick 
responses were a major advantage, and its ease of use was appreci-
ated for its simplicity and straightforwardness. Those who graded 

the tool as having high reliability noted the need for very specific 
search terms to achieve accurate results, while those who rated 
the tool with lower reliability expressed concerns about the lack 
of sources or citations, making it difficult to verify the reliability 
of the information. This divergence in feedback underscored the 
importance of both prompt specificity and source transparency in 
the tool’s effectiveness. 

5 Experiment 2 
In the previous experiment we saw that while LLM-based search 
helped participants arrive at decisions faster, these decisions were 
not always of the same quality. Specifically, when LLM responses 
contained inaccurate information, it was difficult for participants 
to spot these mistakes due to a lack of cues about the veracity of 
the information they were shown. We designed our second experi-
ment to investigate how people react to explicit cues that convey 
confidence in the responses generated by the LLM, and how this 
affects their decision making. 

This experiment was a three condition, between-subjects design 
where all participants were assigned to use the same LLM-based 
search tool that responded with the same text to a given query, since 
it was again configured at zero temperature. The only thing that 
varied between conditions was how the numerical measurements 
in the responses were displayed visually via color coding. In the 
control condition, participants saw answers similar to those shown 
in Experiment 1—plain text without any cues about the veracity 
of measurements in the response. In each of the two treatment 
conditions, participants saw confidence-based color highlighting 
for numerical measurements contained in responses. As depicted 
in Figure 5, the “High + low confidence” condition showed green 
highlighting for “high confidence” measurements and red for “low 
confidence” ones, whereas the “Low confidence only” condition 
showed red highlighting for “low confidence” measurements only. 
The highlighting of each measurement was based on the token 
generation probabilities provided by GPT-3, with a generation prob-
ability of less than or equal to 50% displayed as a red highlight and 
greater than 50% displayed as a green highlight.2,3 

The procedure was nearly identical to Experiment 1. Participants 
completed a sequence of three decision tasks comparing pairs of 
SUVs on the same criteria as in our first experiment (the ratio of 
total cargo space to total length). And, as in the first experiment, all 
but the last task were “easy” for the LLM in that there was a high 
likelihood of it returning correct information with high confidence, 
whereas the third task was once again “challenging” for the LLM and 
likely to contain inaccurate information, but with low confidence. 
We achieved this with GPT-3 by pre-prompting the model with 
ground truth measurements for the vehicles involved in each task on 
everything except the first query of the third task. This meant that the 
first and second tasks largely returned accurate information with 

2We used GPT-3 in this experiment in order to have access to token probabilities, not 
available with GPT-3.5, which was used in the first experiment.
3Specifically, for measurements greater than 1, we used the token probability for the 
whole number token only (to the left of the decimal), whereas for measurements less 
than 1 we used the token probability for the decimal token only (to the right of the 
decimal. For example, for “47.2” the token probability for “47” is used, whereas for 
“0.248” the token probability for “248” is used. We piloted other highlighting schemes 
with more than two colors, but found these to be less effective than using just one or 
two colors. 
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Figure 5: The two treatments tested in Experiment 2: highlighting of both low and high confidence measurements (left) and 
only low confidence measurements (right). There was an additional control condition in which no highlighting was shown, 
mirroring Experiment 1. 

high confidence, but the first query of the third task often contained 
mistakes that were highlighted as low confidence. So if participants 
issued queries of the form “Which has the larger total cargo space 
to length ratio the 2020 Toyota 4Runner or the the 2020 GMC 
Terrain” on the first query of the third task, those in the treatment 
conditions would see cues about potentially unreliable information 
in the LLM response. The key question in this experiment was 
whether participants in the treatment conditions would take note 
of these low confidence cues and issue subsequent queries to double 
check the information they were shown. 

We recruited 120 U.S. based participants from Amazon Mechani-
cal Turk from a vetted pool of high-effort workers. For qualifica-
tions, we required at least 2,500 HITs approved with a 99% minimum 
approval rate. Participants were paid $5 for completing the experi-
ment, with no performance bonuses. Similar to Experiment 1, we 
did not collect any demographic information from participants. 

5.1 Results for Experiment 2 
As in our first experiment, we analyzed efficiency, accuracy, and per-
ceived experience across all conditions, but in this experiment we 
compare the three different treatments of confidence highlighting 
in LLM-based search instead of contrasting LLM-based search with 
traditional search.4 For brevity we include only top-level results on 
the accuracy and perceived experience here, with the remaining 
results presented in Appendix C. 

Accuracy. As in our first experiment, for the easy tasks (tasks 1 
and 2) where the LLM provided largely reliable information with 
high confidence, accuracy was comparable between all three condi-
tions, and quite high (Figure 6). However, for the challenging task 

4Of note, results are not directly comparable between the two experiments because 
Experiment 1 used GPT-3.5 whereas Experiment 2 used GPT-3 due to the need for 
token probabilities. 

Figure 6: Experiment 2: Accuracy by condition. The first two 
tasks are easy, whereas the third is a comparison selected 
for which the LLM tends to err. Points represent means and 
error bars are plus or minus one standard error. 

(task 3) where the LLM provided less reliable information on the 
first query, we see a dramatic difference between conditions: while 
accuracy plummets to 26% in the control condition without any 
confidence highlighting, accuracy in each of the treatment condi-
tions was substantially higher—58% for the high + low confidence 
condition (t(74.47) = -2.98, p < 0.01) and 53% for the low confidence 
only condition (t(70.36) = -2.44, p = 0.02). In this case, both showing 
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Figure 7: Experiment 2: Results on user perceptions. Each 
smaller point represents one participant’s response, the 
larger points show the mean by condition with error bars of 
plus or minus one standard error. 

high and low confidence cues and simply flagging low confidence 
information more than doubled accuracy in the decision task. 

As shown in additional plots in the Appendix, the increased 
accuracy in the treatment conditions is largely due to participants 
issuing their initial query, seeing measurements flagged as low 
confidence, and issuing follow-up queries to double check the infor-
mation they were shown. Whereas most participants in the control 
condition made a decision after one query, the majority of par-
ticipants in the treatment conditions issued two or more queries, 
costing them some additional time, but more often leading to the 
correct decision. 

To better understand the accuracy differences between condi-
tions, we examined the rate of follow-up queries for each task. In 
tasks 2 and 3, 19 participants in the control condition initially issued 
a complex query comparing the two vehicles based on the ratio of 
both dimensions. Despite this, only 2 participants issued a meaning-
ful follow-up query in either task, even though all 19 participants 
got the correct answer in task 2 but the wrong answer in task 3. In 
contrast, for participants in the treatment conditions, the number 
of participants making similar first queries increased from 24 in 
task 2 to 31 in task 3. More importantly, the number of meaningful 
follow-up queries rose from 5 to 15. This means that participants in 
the treatment conditions showed a slightly higher rate of follow-up 
queries than the control group when they already had the correct 
answer, but their rate of follow-up queries was much higher when 
their initial answer was incorrect. 

User experience and perceived reliability. Finally, by way of per-
ceived reliability and search experience, we find that all three con-
ditions were rated quite favorably, and we detected no systematic 
difference between them, as shown in Figure 7. The no highlighting 
condition had an average reliability rating of 4.1, whereas the low 
confidence only condition had an average rating of 3.8 and the high 
+ low confidence condition had an average rating of 4.0. Neither 
difference between the treatment conditions and the control is sta-
tistically significant (low confidence vs. no highlighting: t(75.62) = 

1.90, p = 0.06; high + low confidence vs. no highlighting: t(77.70) = 
0.81, p = 0.42). Similarly, the average search experience rating was 
4.2 for the no highlighting condition, 3.9 for the low confidence only 
condition, and 3.7 for the high + low confidence condition. Despite 
a directional trend in the estimated means, neither difference is 
statistically significant (low confidence vs. no highlighting: t(71.00) 
= 1.31, p = 0.19; high + low confidence vs. no highlighting: t(75.75) 
= 1.92, p = 0.06). 

Finally, we examined participants’ free-text responses about the 
pros and cons of the LLM-based search tool in this experiment. 
Participants using the tool without confidence indicators (the same 
version as in Experiment 1) gave feedback consistent with those in 
the earlier experiment. They praised its ease of use, speed, ability to 
deliver precise information, and highlighted the importance of craft-
ing detailed prompts to receive reliable responses. Those using the 
tool with confidence indicators similarly appreciated its efficiency 
in simplifying information retrieval and valued the confidence rat-
ings as a way to enhance trust in the provided answers. However, 
they were more likely to express concerns about the lack of sources 
for verifying accuracy. This difference plausibly reflects how the 
confidence indicators drew their attention to questions of reliability, 
encouraging deeper consideration of the tool’s limitations. 

6 Discussion and Conclusion 
In this work we investigated how LLM-based enhancements in 
search tools affect efficiency (time, number of queries, and query 
complexity), accuracy, user experience, and the ability to detect 
errors in a consumer research task. To obtain these measures, we de-
veloped an experimental platform that, holding all else constant, en-
ables the random assignment of participants to either traditional or 
LLM-based search and keeps detailed records of their interactions. 

In terms of efficiency, in our first experiment we found that par-
ticipants who used the LLM-based search tool were able to complete 
tasks in roughly half the time compared to those who used a tradi-
tional search engine. In addition, we observed a slight reduction in 
the number of queries issued, accompanied by a significant increase 
in query complexity. Put simply, LLM-based search allowed people 
to reach decisions more rapidly and with fewer steps by issuing 
queries and receiving responses that more directly addressed the 
decisions at hand. These observed improvements in efficiency were 
accompanied by significant increases in favorable assessments of 
the LLM-based search tool based on participants’ self-reports of 
their overall experience. 

Concerning decision quality, in our first experiment we found 
comparable accuracy between conditions for easy tasks, but a sig-
nificant drop in accuracy for those using the LLM when it erred, 
with almost half of the participants in this condition making an 
incorrect decision for the final task. In contrast, the vast majority 
of participants using traditional search made a correct decision 
for the final task. In investigating this drop in accuracy, we found 
that, without appropriate confidence cues, participants using LLM-
based search were overreliant on the tool, with the majority of 
people (60%) issuing just a single query before reaching a decision. 
Furthermore, based on the nearly identical subjective reliability 
ratings between conditions, it appears that participants who used 
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the LLM-based search tool were unaware of errors in the responses 
they were shown. 

In our second experiment we proposed and tested mitigations for 
this issue of overreliance. We examined whether providing people 
with visual cues—specifically, color-coded responses that reflected 
the model’s confidence based on token generation probabilities— 
could improve accuracy. This approach was effective: compared to 
a control condition without any highlighting, accuracy increased 
significantly, and participants were more inclined to seek addi-
tional information when responses indicated low confidence. This 
suggests that while automatically generating calibrated signals of 
model confidence is technically challenging, clearly communicating 
such signals to users can effectively reduce overreliance as they 
research products and services with LLM-based tools. 

From a design perspective, the results of our experiments offer a 
clear message: if we want to encourage people to think critically 
about the information presented to them, we need to give them cues 
that help them do so. Otherwise it is likely the case that they will 
take what they are shown at face value. Thankfully, however, even 
very simply cues such as coarse-grained highlighting of potentially 
unreliable information can help. This highlights a broader design 
principle: effective tools should not only deliver accurate informa-
tion but also actively support users in questioning and verifying 
that information. 

Two open questions are: how best to identify potential errors 
in LLM-based outputs and how best to convey confidence to users, 
enabling them to make informed decisions. In our experiments, we 
used token probabilities to identify potentially incorrect responses. 
In order to do that, we had to move from GPT-3.5 to GPT-3.0, be-
cause token probabilities were not available for GPT-3.5 and later 
models. Token probabilities are not necessarily calibrated with re-
spect to correctness, which can be exacerbated when models are 
updated based on human preference data [37]. In ongoing research, 
we are investigating more reliable ways to identify incorrect infor-
mation in LLM output and to convey the various types of errors that 
LLMs might make, and how to best provide cues about potential 
errors to users. 

While this investigation found many benefits of LLM-based 
search, it also uncovered an unanticipated strength of traditional 
search. In practice, it is rare for people to query more than one 
product and one dimension at a time, despite how common it is for 
users to compare products on multiple dimensions [6, 20, 40]. In 
our first experiment, participants in all conditions were effectively 
encouraged to try more complex searches. Surprisingly, partici-
pants in the traditional search condition found correct answers in 
fewer than four queries on average; sometimes they found them in 
just one query. In our experiments this paid off because the tradi-
tional search tool often directed people to pre-generated product 
comparison web pages. Therefore, it is possible that the introduc-
tion of LLM-based search norms may encourage people to issue 
more complex queries to traditional search engines, improving their 
efficiency with these existing tools. 

As to limitations, we explored a specific search domain and a 
simplified decision task. Specifically, we asked participants to make 
choices among pre-defined pairs of vehicles. While this allowed 
us to construct well-defined tasks with clear and correct answers, 
it also represents just a portion of the broader search process. In 

practice, search is often an open-ended and iterative journey where 
people conduct research to learn about a given domain and refine 
what they are searching for as they go. While we leave more open-
ended studies for future work, we anticipate that LLM-based search 
could offer even greater advantages in such scenarios, as LLMs are 
better equipped than traditional search to respond to open-ended 
questions and to synthesize and compare resulting information. 
Future work could also explore other aspects of the broader search 
process. We focused on searches involving the purchase of high 
cost durable goods, but we expect that different search scenarios 
will be affected in different ways. For example, while users may 
quickly move to more complex queries when doing research on 
purchasing a car, they may continue to use simpler searches in 
other product categories. 

Furthermore, we expect users to respond differently to cues 
about the correctness of information under different conditions. 
For example, we observed that when the LLM-based tool provided 
signals of its own low confidence in certain measurements, it led 
people to carry out more searches for additional information in a 
car buying scenario. However, users may be inclined to accept such 
pieces of information in other scenarios if they are more interested 
in a range or approximate values than in exact numbers (for example 
when searching for the number of calories in a specific type of 
food). Another question for future research is the degree to which 
members of various demographic groups (e.g.,those with higher or 
lower levels of educational attainment) would adaptively alter their 
behavior in response to confidence signals. If differences exist, it 
might suggest tailoring different signals to different audiences. 

We also designed our LLM-based search tool around a non-
conversational version of GPT for a tight experimental contrast 
with traditional search. A natural avenue for future investigation 
would be to include conversational capabilities, and to explore 
newly-available tools such as Bing Chat, Google Gemini, and the 
latest ChatGPT models that blend traditional search and LLMs by 
issuing traditional queries against a web index and using LLMs 
to summarize the results, including external hyperlinks for fur-
ther information [24]. Future work could also compare different 
methods for reducing overreliance. For example, the confidence-
based highlighting studied here could be evaluated against alterna-
tive approaches for communicating uncertainty, such as qualifying 
statements, numerical confidence scores, or providing references 
to source materials via hyperlinks.5 While our work establishes 
confidence-based highlighting as one method to combat overre-
liance, this is not to say it is the most effective method for doing so, 
or should be the only one deployed in practice. 

A final potential limitation of this study is that, while our design 
encouraged participants to engage thoughtfully with the tasks, we 
cannot completely rule out the possibility that some participants 
failed to invest sufficient effort or misinterpreted the task as re-
quiring them to echo the tool’s answers rather than using the tool 
to make correct choices. While this is theoretically possible, ran-
dom assignment to conditions should ensure that any variations 
in motivation or task interpretation are evenly distributed across 

5At the time that these experiments were conducted, there were no public APIs that 
incorporated retrieval augmented generation based approaches and so we had no way 
to provide references or citations for the LLM’s responses. 
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conditions. The total degree of overreliance might vary with the in-
centives offered, but we expect the differences between conditions 
to generalize. 

Although incentives for accuracy might have further increased 
effort, such approaches could also backfire by encouraging partici-
pants to disregard instructions and seek information outside the 
experiment. Research has shown that incentives can sometimes 
negatively impact participants’ voluntary cooperation or the truth-
fulness of their responses [14, 44]. 

Despite these considerations, our findings provide robust in-
sights into how participants interact with LLM-based and tradi-
tional search tools under controlled conditions. The significant 
improvement in accuracy with confidence-based highlighting in 
Experiment 2, the high and consistent subjective reliability ratings 
across conditions, and the thoughtful qualitative feedback from 
participants all suggest meaningful engagement with the tasks. 
These results highlight the potential of LLM-based tools to improve 
decision-making when thoughtfully designed. Further studies could 
explore how varying incentive structures or real-world task con-
texts might influence behavior. 

In sum, LLM-based information retrieval tools stand to perma-
nently change how users search for information about products 
and services online. The studies presented here suggest that search 
efficiency and user satisfaction will likely increase, but overreliance 
may become more of a concern. We anticipate ongoing innovation 
and evaluation in methods of conveying uncertainty in AI responses 
so that they may be viewed with an appropriate level of confidence. 
Uncertainty in AI answers, and in the world for that matter, can 
never be eliminated, but effective means of communicating it can 
augment people’s cognition and decision making. We view this as 
a key challenge for the field of human-computer interaction in a 
world that is increasingly relying on AI tools that are themselves 
not 100% reliable. 
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Appendix 

A Traditional Search Activity 
Table 1 provides a breakdown of Bing searches for top SUVs in 
terms of the number of vehicles and dimensions in the first half of 
2022. 

Number of Vehicles Number of Dimensions Percent of Queries Percent of Queries (w/ 1+ dimension) 

1 0 63.00% – 
1 1 25.18% 68.40% 
1 2 9.22% 25.05% 
1 3 2.00% 5.43% 
1 4 0.23% 0.63% 
1 5 0.01% 0.01% 
1 6 0.00% 0.00% 
2 0 0.18% – 
2 1 0.10% 0.26% 
2 2 0.07% 0.18% 
2 3 0.01% 0.04% 
2 4 0.00% 0.00% 
3 0 0.00% – 
3 1 0.00% 0.00% 

Table 1: Table of number of products and dimensions in all 
searches for top 25 SUV in 2022. Starting with a list of the 
top 25 SUV by sales in the first half of 2022 we looked at 
every 2022 Bing search that included these 25 SUVs and and 
the top 10 most queried dimensions (e.g., cargo space, length, 
etc). Most queries mention only one vehicle. If a dimension 
is mentioned, most queries mention only one dimension. 

B Experiment 1 

B.1 Tutorial 
Before starting the first task, participants in each condition were 
given a short tutorial on what to expect from the search tool they 
would be using. Figure 8 shows the tutorial for the traditional search 
condition and Figure 9 shows the tutorial for LLM-based search. 

Figure 8: The tutorial for participants who were in the tradi-
tional search condition (Experiment 1). 

B.2 Speed and accuracy jointly 
Speed and accuracy are both desirable for search engine users. 
Figure 10 plots them against each other. The upper left corner 
of each panel represents the best performance, that is, the most 
correct answers in the least amount of time. To facilitate seeing 
patterns despite overplotting, a density was fit to the responses to 
create a heat map. The high density areas in both panels show the 
participants with the LLM tools in a favorable position near the 
upper left. They have less variance in time taken but more variance 
in accuracy, mostly owing to the additional item designed to be 
difficult. Performance on this item is marked with an x showing that 
the vast majority of participants who did not score all the questions 
correctly made an error on this item. 

C Experiment 2 

C.1 Efficiency 
As in our first experiment, across conditions we see a learning effect 
where participants take less time to reach a decision on the second 
task compared to the first (Figure 11). Using a similar linear mixed 
model as in Experiment 1 to model log task duration on the easy 
tasks, we find that on average across all conditions, participants take 
3.3 minutes (95% CI [2.9 minutes, 3.7 minutes]) to complete the first 
task, but only 1.8 minutes (95% CI [1.6 minutes, 2.0 minutes]) to com-
plete the second task. Averaged over both of these tasks, we find that 
participants in the treatment conditions were slightly slower than 
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Figure 9: The tutorial for participants who were in the LLM-based search condition (Experiment 1). 

Figure 10: Joint view of speed and accuracy (Experiment 1). 
Each point represents the data from one participant over five 
questions. Points are represented with an “o” if they got the 
challenging question correct and a “x” if they failed to. 

those in the control overall, with a statistically significant difference 
for high + low confidence highlighting compared to no highlighting 
(t(113) = 2.09, p = 0.04) but no evidence of a systematic difference 
for low confidence highlighting only (t(113) = 0.63, p = 0.53). On the 
third task, where participants encounter potentially unreliable infor-
mation, we see an increase in time to decision for the two treatment 
conditions that highlight potentially unreliable information, but no 
such increase for the control without confidence highlighting (low 
confidence only vs. no highlighting: t(72.79) = -2.53, p = 0.01; high 
+ low confidence vs. no highlighting: t(72.63) = -3.70, p < 0.001). 

Analyzing the number of queries using a similar linear mixed 
model as in Experiment 1, we find no evidence of systematic dif-
ferences in the number of queries issued in the first two easy tasks 
across conditions, with participants issuing 2.3, 2.7, and 2.7 queries 
per task on average for the no highlighting, low confidence only, 
and high + low confidence conditions, respectively. However, in 
the third task we see substantial increases in the number of queries 
for the two treatment conditions compared to the control (low 
confidence only vs. no highlighting: 3.0 vs 2.2 queries on average, 
t(70.97) = -2.00, p = 0.05; high + low confidence vs. no highlighting: 
3.6 vs 2.2 queries on average, t(73.21) = -3.29, p = 0.002). This is 

visually apparent in Figure 12, as depicted in uptick in queries for 
the middle and right panels compared to the left panel. 

Figure 11: Time to reach a decision in Experiment 2 by condi-
tion and task. Each point represents one participant’s number 
of queries for the task, with o’s and x’s indicating correct and 
incorrect responses, respectively. 

Figure 12: Number of queries issued in Experiment 2 by con-
dition and task. Each point represents one participant’s num-
ber of queries for the task, with o’s and x’s indicating correct 
and incorrect responses, respectively. 


	Abstract
	1 Introduction
	2 Related Work
	2.1 LLMs and Productivity
	2.2 Hallucinations and Overreliance
	2.3 The Evolution of Web Search

	3 Domain and Research Questions
	4 Experiment 1
	4.1 Results for Experiment 1

	5 Experiment 2
	5.1 Results for Experiment 2

	6 Discussion and Conclusion
	Acknowledgments
	References
	A Traditional Search Activity
	B Experiment 1
	B.1 Tutorial
	B.2 Speed and accuracy jointly

	C  Experiment 2
	C.1 Efficiency




