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ABSTRACT

The widespread availability of large language models (LLMs) has
provoked both fear and excitement in the domain of education.
On one hand, there is the concern that students will offload their
coursework to LLMs, limiting what they themselves learn. On the
other hand, there is the hope that LLMs might serve as scalable,
personalized tutors. Here we conduct a large, pre-registered experi-
ment involving 1200 participants to investigate how exposure to
LLM-based explanations affect learning. In the experiment’s learn-
ing phase, we gave participants practice problems and manipulated
two key factors in a between-participants design: first, whether
they were required to attempt a problem before or after seeing the
correct answer, and second, whether participants were shown only
the answer or were also exposed to an LLM-generated explanation
of the answer. Subsequently, all participants were tested on new
test questions to assess how well they had learned the underlying
concepts. Overall we found that LLM-based explanations positively
impacted learning relative to seeing only correct answers. The
benefits were largest for those who attempted problems on their
own first before consulting LLM explanations, but surprisingly this
trend held even for those participants who were exposed to LLM
explanations before attempting to solve practice problems on their
own. An accompanying qualitative analysis revealed that these
boosts in performance were indeed due to participants adopting
the strategies they were shown, and that exposure to LLM explana-
tions increased the amount people felt they learned and decreased
the perceived difficulty of the test problems.
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1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) present
both potential benefits and challenges for math education. There is
the fear that students could use LLMs as substitutes for studying,
having these tools do their homework for them at the cost of learn-
ing how to do it themselves. However, there is also hope that an
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LLM could act as a personalized and customizable tutor that can
deepen their comprehension of the material. While there is public
discussion on this topic, there is little to no empirical evidence as
to whether LLMs help or hinder in these ways [35].

In this paper, we present a large, pre-registered experiment on
how the use of LLMs affects learning in the domain of mathematics.
We use this experiment to investigate the following:

e When doing practice questions for a math test, how does the
type of explanation people receive (answers alone or answers
with LLM-generated explanations) affect performance on
subsequent test questions?

e How does the relationship between explanation type and
performance change when people i) attempt questions before
seeing explanations or ii) see explanations before attempting
questions?

In the experiment, we give participants a round of practice problems
and manipulate two key factors in a between-participants design:
first, whether they are required to attempt a problem before or after
seeing the correct answer, and second, whether participants are
shown only the answer or are also exposed to an LLM-generated ex-
planation of the answer. Subsequently, all participants are tested on
new test questions to assess how well they have learned the under-
lying concepts. The primary outcome measure is their performance
on this test set.

Overall, we find that LLM-based explanations positively im-
pacted learning (relative to seeing only correct answers), regardless
of whether participants consulted them before or after attempting
practice problems. Pre-prompting LLMs to act as tutors with cus-
tomized instructions and strategies may be even more helpful. In
the following sections, we look at the related work, followed by
more details of the experimental design and results.

2 BACKGROUND AND RELATED WORK

This paper builds upon the longstanding research into education
and the much more recent literature on how people use and are
affected by LLM-based tools.

2.1 Role of feedback and explanation in
learning
Long before LLM-based tools, researchers were exploring methods
to improve learning with feedback and explanations [20, 33, 63].
Feedback. Feedback plays a vital role in the learning process
as it minimizes the gap between actual and desired knowledge
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[7]. Numerous factors influence feedback efficacy, as identified in
feedback research [13, 67]. Content is arguably the most critical
aspect of any feedback method [37]. Fundamentally, feedback must
convey the correctness of a student’s response (i.e., correct vs. in-
correct), however studies reveal little to no benefit of providing
verification feedback compared to no feedback [54, 56, 61]. Incor-
porating the correct answer in the feedback message significantly
enhances feedback efficacy compared to verification feedback alone,
as it offers the information students require to rectify their errors
[54, 55, 61, 73, 77].

Instructors and researchers often assume that additional infor-
mation in feedback messages will improve learning. Elaborative
feedback describes feedback types that are more complex than
correct answer feedback [37]. Surprisingly, studies comparing elab-
orative and correct answer feedback found little or no benefit to
increasing feedback message complexity [5]. For instance, expla-
nation feedback, which explains why a response is correct or in-
correct, showed no benefits compared to correct answer feedback
[26,38,49,57, 62,69, 77]. [12] suggested that these null effects might
result from assessing learning on the final test by repeating initial
test questions. An experiment involving university students demon-
strated that explanation feedback improved performance on new
inference questions in a test. In online quizzes with closed questions,
[21] demonstrated how elaborate feedback can enhance learning,
recommending at least providing explanations for incorrect student
answers. [23] indicated that elaborating on correct answer feedback
with examples improved conceptual learning. Elaborative feedback
is commonly incorporated into instructional methods, such as intel-
ligent tutoring systems [34, 51] and computer-assisted instruction
programs [25, 40].

Explanation. In Explanation and Cognition, [32] emphasized
that explanations are pervasive, emerging from childrens’ early
developmental questions and extending into all aspects of adult
life. Explanations represent one of the most common instructional
strategies [42], with applications in classroom teaching [47], hu-
man tutoring [16], and learning from texts [17, 28]. Despite their
importance, the question of what makes an explanation effective is
still an open question in educational research [74, 79].

[79] proposed a framework for evaluating the effectiveness of
instructional explanations, defining them as explanations deliber-
ately designed for teaching in educational contexts. By reviewing
and synthesizing empirical work across various research fields,
they identified four key characteristics of effective explanations: (a)
adaptability, (b) focus on concepts and principles, (c) consideration
of learners’ ongoing cognitive activities, and (d) complementing,
rather than replacing, learners’ cognitive processes. Additionally,
the authors noted that instructors’ (i) ability to assess students’
understanding [8, 65] and (ii) their epistemological beliefs about
teaching [75] might play crucial roles in providing effective ex-
planations. Supporting tutors/instructors in delivering effective
explanations has also been addressed [59, 64, 78].

Moreover, several cognitive and non-cognitive factors in learn-
ers may negatively impact the effective use of explanations. For
instance, [22] suggested that non-cognitive variables such as inter-
est, motivation, and attitude can significantly influence the positive
outcomes of instructional explanations. [43] argued that to facilitate
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learners’ processing of explanations, the topic should be problema-
tized to encourage productive engagement, thereby promoting the
construction of conceptual knowledge. [79] also emphasized that
instructional explanations and their specific functions may vary
greatly depending on the context in which they are provided [76].
[36] proposed a framework for effective instructional explanations
in scientific teaching. [50] compared two types of explanations,
functions (what a thing is for) and mechanisms (how a thing works),
and examined the order in which they may be most effective. [1]
demonstrated how computer-based learning environments might
compel learners to process instructional explanations to address
gaps in their understanding.

2.2 LLM performance in standardized tests

Performance of LLMs on Question Answering (QA) tasks have been
extensively studied [41, 44]. [3] have shown fine-tuned models, such
as Vicuna and ChatGPT, attain near-perfect scores in QA tasks,
surpassing models that lack supervised fine-tuning. [68] has shown
that Flan-PaLM beats the existing state-of-the-arts in medical QA
datasets. In terms of performance on academic and professional
exams, GPT-4 has been shown to land in the top 80th percentile
for both SAT Math and GRE Quantitative Reasoning [53]. [27]
showed the performance of ChatGPT on the United States medical
licensing exam and discussed its implications on medical education
and assessment. ChatGPT was shown to achieve the equivalent of
a passing score for a third-year medical student and provide logical
and informational context across majority of the answers.

2.3 Human-Al teaming

Research in human-centered Al has shown when Al systems explain
their answers, the performance of human-AI team reaches a higher
level compared to the performance of human alone [14, 45, 58]. [6]
have further shown how human-AI team can achieve complemen-
tary performance, where it outperforms both the AI and human
acting alone in a decision-making task. [72] showed complemen-
tarity in a visual classification task with explanations. In a similar
visual classification task, [29] found that counterfactual explana-
tions, in addition to training examples, improved performance of
people. [15] showed that leveraging Al to discover and teach opti-
mal cognitive strategies could be a promising approach to improve
human judgment and decision making. [66] analyzed 5.8 million
moves by professional Go players and found that humans began
to make significantly better decisions and novel (i.e., previously
unobserved) moves following the advent of superhuman Al In
the context of solving multiple-choice questions with support from
LLMs, [9] conducted online experiments to show human+LLM team
outperforms LLM, which in turn outperforms humans alone for
questions drawn from practice tests for exams targeted at high-
school, undergraduate and professional students [30]. [39] did a
comprehensive survey of empirical studies in human-AlI decision
making. [52] conducted an online experiment to evaluate the im-
pact of ChatGPT on productivity and other measures related to
writing tasks.
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Question 1

) 37.5 miles/hour.

hat . 5
Therouna  Here's an Al-generated solution:

A) 35 milesour B) 37.5 miles/mour

C) 40 miles/our D iles/hour

Next Question

The average speed for the round trip s 37.5 miles per hour (Option B).

- J

@ a

Question 2»

) 40 miles/our. That's incorrect. Tt eris B) 37.5 miles/hour.

Here's an Al-generated solution:

)y (Distance = Rate * Time) and make
n Aand B that will make the math easier. Let's choose a
iple of both 30 and 50.

A) 35 mileshour B) 37.5 miles/our

G Dmlzizy RiR2S find the time it takes to travel from A to B and back to A.

For the trip from Ato B:

Next Question

50 miles / 50 miles/hour = 3 hours

find the total distance and total time for the round trip.
Total Dista 150 miles (A to B) + 150 miles (B to A) = 300 miles
Total Time (At0B)+3 h to A) =8 hours.

| Time = 300 miles /8 hot les/hour

speed for the round tr s per hour, which is option B.
Summary
1. Make up a value for the di that is a multiple of both speeds.
2 ing D = RT.
ind total time for the round trip.

RT.

L )

(a) Try First + Stock LLM condition.

(b) Try First + Customized LLM condition.

Figure 1: Example questions from the practice phase in different LLM conditions.

2.4 LLM-based tools for learning

Intelligent Tutoring Systems (ITSs) have a rich history in providing
personalized feedback and explanations to students [2]. Advances
in generative models have resulted in increased use of these mod-
els in ITSs [4, 10, 18, 46, 80]. Through a commentary, Kasneci et
al. [31] highlighted the opportunities and challenges of LLMs for
education. Tack et al. [71] proposed an Al "teacher"” test to estimate
the pedagogical abilities of generative models. In a comparative
study of responses generated by a human teacher, GPT-3 [11], and
Blender [60], the authors found that human performance exceeds
both models when it comes to helping the student. Within the con-
text of computing education, Macneil et al. [48] compared three
different types of explanations of a code snippet, generated using
Codex, with respect to the usefulness of these explanation types.

This paper builds upon the existing research on the role of feed-
back and explanation in learning, intelligent tutors and human-AI
collaboration. We probe the design space of using LLMs for learn-
ing by manipulating the sequence in which learners engage with
content - either by attempting to solve problems before accessing
LLM-generated solutions or vice versa. Our approach provides a
unique understanding of how the timing of feedback can play a
role in Al-augmented learning, offering fresh perspectives on the
integration of LLMs as educational aids.

3 EXPERIMENTAL DESIGN

We conducted a pre-registered! online experiment that consisted
of two phases: a practice phase and a test phase. As depicted in
Figure 2, it was a 2x3 between subjects design with randomization
in the practice phase. During the practice phase, participants were
presented with questions that were designed to mirror the math sec-
tion of the Scholastic Assessment Test (SAT). They were randomly
assigned to either attempt these questions without any help (Try
First) or view the answers before attempting them (See Answer First).
Additionally, they received one of three types of explanations:

Uhttps://aspredicted.org/H34_SZX

Participants

Randomize Timing of Assistance

Try First See Answer First

Randomize Type of Assistance

Answer + Stock LLM

Answer Only Explanation

Explanation

Answer + Customized LLM

2 Practice Problems

(with assigned timing and
assistance type)

Interlude: 1-min Snake
Game for All Participants

2 Test Problems Key dependent variable

Accuracy on the test problems

(without assistance)

Survey
(feedback and additional
self-reported measures)

Figure 2: Schematic of the experiment design.
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Answer only Stock LLM
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Figure 3: Accuracy by condition. Empty light circles show accuracy in the practice phase and solid dark circles show accuracy
in the test phase. Error bars show one standard error above and below these averages.

o None: Only the correct answer was provided.

e Stock LLM: Correct answers were accompanied by a GPT-4
generated explanation.

o Customized LLM: Correct answers were accompanied by
explanations generated by GPT-4 with a specialized pre-
prompt. The pre-prompt, which was hidden from partici-
apnts, included customized problem solving strategies (see
Figure 6 in the Appendix).

After completing the practice phase, participants took a short
break by playing a game of Snake in their browser for one minute.
This served as a distractor, allowing some level of forgetting regard-
ing the problems and solutions they just encountered.

In the test phase, participants were given slightly altered versions
of the same types of questions they faced during the practice phase.
The wording remained the same, but the numbers used in the ques-
tions were changed. These test questions were presented without
any assistance or feedback, and the set of numbers shown in the
practice versus test phases was randomized for each participant.
After the test phase, participants were asked to report how difficult
they found the test questions (very easy, somewhat easy, somewhat
difficult, very difficult), how many of the two test questions they
thought they got right, how much they learned from the practice
problems (nothing, a little, a lot). Participants also provided a free-
text response with a few sentences about the strategy they used to
answer each of the questions from the test phase.

3.1 Domain and Stimuli

The questions the participants saw were designed to mirror material
from the math section of the Scholastic Assessment Test (SAT). Each
participant solved two out of four possible types of questions. The
four distinct types of questions for our experiment were:

o Calculating the average speed of a multi-segment trip.
o Solving for two unknowns with two constraints.
e Determining the parity of an algebraic expression.

o Identifying the missing measurement from an average.

Figure 1 shows an example question (calculating the average
speed of a multi-segment trip) from the practice phase for the dif-
ferent LLM conditions. We used GPT-4 to generate all explanations
for the LLM conditions. For the Customized LLM condition, we used
a hidden pre-prompt (Figure 6) with customized problem-solving
strategies based on best practices for standardized test tutoring.

3.2 Participants

We recruited 1,202 (99% of whom passed an attention check) partic-
ipants from Amazon Mechanical Turk.? We chose this sample size
based on the results of previous pilots so that we had approximately
80% power in detecting differences between conditions at a level
of significance of 5%. Participants were randomly assigned to one
of the six conditions. Each participant received a flat payment of
$3.30.

4 RESULTS
4.1 Measure of Accuracy on the Test Problems

Following our pre-registration, we used a mixed-effects logistic
regression to model each participant’s selected option for each
question in the test phase, with main effects for and an interaction
between order and explanation type, random effects for participants,
and fixed effects for question type as a control. We report the results
of the pre-planned contrasts below.

As depicted in Figure 3, in the practice round participants in
the See Answer First condition who were shown the correct answer
before responding did better than those in the Try First condition.
However, this trend was reversed in the test phase: participants
who attempted practice problems before viewing the solution (solid

%In education research, previous studies have shown that MTurk responses offer a
quality comparable to traditional methods, including samples from undergraduate
students and communities [24]. Crowdworkers have been shown to be reliable proxies
for online learners [19].
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Figure 4: Strategies used by participants for solving test problems. The width of each rectangle (annotated on the bottom of each
rectangle) shows the percent of responses that used each strategy in each condition, while the height shows the corresponding
average accuracy when that strategy was used. Error bars show one standard error above and below these averages. Increased
performance is largely due to participants adopting the strategies they were exposed to by the LLM.

red points) performed better in the test phase compared to those
who saw the answers prior to attempting questions in the practice
phase (solid blue points). Furthermore, we see that within the Try
First condition, there were substantial benefits to both the Stock
and Customized LLM explanations over seeing just the correct
answer—while slightly more than half of test question responses
were correct in the Answer only condition, more than two-thirds
of responses were correct when participants were shown LLM
explanations (z = —3.46, p < 0.001 for Answer only vs. Stock LLM;
z = —4.20,p < 0.001 for Answer only vs. Customized LLM).

In the See Answer First condition, we see that exposure to the
customized LLM results in a higher accuracy compared to seeing
the correct answer only (z = —1.67, p = 0.05), but find no statisti-
cally significant lift from the stock LLM compared to just seeing the
correct answer (z = -0.68, p = 0.25). Interestingly, comparing perfor-
mance in the See Answer First + Customized LLM (on the far right)
to Try First + Answer only (on the far left), we find no statistically
significant difference between conditions (z = —1.15, p = 0.12).

4.2 Strategies Followed by the Participants

After solving the test problems we asked participants to describe
the strategy they used for each problem in their own words. We did
this to learn more about whether they adopted the strategies they
were shown in the practice rounds, and if so how effective different
strategies were in improving performance. To investigate this we
used an iterative coding scheme to categorize each of the free text
responses. First, we manually labeled a sample of 200 responses

to determine the set of strategies that participants tried for each
question type and whether they explicitly mentioned following the
strategy provided in the practice round or not. For instance, for
the average speed calculation problem shown in Figure 1, strategy
labels included the Stock LLM’s "harmonic mean" approach, the
Customized LLM’s "make up a distance" strategy, and some alter-
native strategies that were not directly shown to participants (e.g.,
"algebra with D=RT", which can be time consuming but yields a cor-
rect response, and "averaging speeds”, which results in an incorrect
answer). We also included labels for when participants indicated
that they had simply guessed. Then we created a few shot prompt
for GPT-4 with examples of each strategy label for each question
type and ran each response through the GPT-4 API to generate
labels at scale for all 2400 responses (2 responses for each of the
1200 participants). To check the quality of these labels, we verified
that the GPT-generated labels agreed with the manual labels on the
sample of 200 responses that we coded ourselves.

With strategy labels generated for each question type, we an-
alyzed which strategies participants adopted and the efficacy of
these strategies, aggregated across questions, as shown in Figure 4.
Specifically, we looked at whether participants followed one of the
strategies recommended by the LLMs, if they used an alternative
strategy, or if they simply guessed. In the Answer only condition
(the far left facet), the majority of participants resorted to guessing
or using other alternative strategies, resulting in an average accu-
racy below 50%. This is visually represented by the predominant
red and orange bars. In contrast, when examining the Stock LLM



Preprint, November 2023, NY

Harsh Kumar, David M. Rothschild, Daniel G. Goldstein, and Jake M. Hofman

Try first See answer first o Try first See answer first Try first See answer first
c
3.24 é 13
g 2
5 s
§ 90% < §
1.24
314 S Z
2 S @
£ k¥ 2
e 2 85%+ <
5 = 8
2 = B 114
@ 304 Qo 4
3 é 80% < ®
o £
[}
o = > 1.0
29 8 g
’ Q 75% 4 g
5 <
= >
c
o
g 0.9+
T T T T T T D T T T T T T T T T T T T
Answer  Stock Customized ~ Answer  Stock Customized 0O- Answer  Stock Customized ~Answer  Stock Customized Answer  Stock Customized ~Answer  Stock Customized
only LLM LLM only LLM LLM only LLM LLM only LLM LLM only LLM LLM only LLM LLM
Explanation Type Explanation Type Explanation Type

Figure 5: Plots of participants’ self-reported perception and performance. The left panel shows perceived difficulty ratings (on
a 4-point likert scale), the middle panel indicates the percentage of participants who felt they learned something, and the right
panel presents the perceived correctness on test questions (either 0, 1, or 2), all segmented by Try First and See Answer First
conditions, and across three explanation types: Answer only, Stock LLM, and Customized LLM.

and Customized LLM conditions (middle and right facets, respec-
tively), we see a significant shift. We see substantially less guessing
and use of alternative strategies, indicated by the smaller red and
orange regions. Instead, there is a notable increase in the blue and
green bars, showing that participants predominantly adopted the
strategies aligned with the LLM explanations they were shown.
Furthermore, performance for those who adopted either of these
strategies is markedly higher than for those guessed or used alter-
native approaches, with average accuracies under these strategies
ranging from 60-80%.

4.3 Post-task Survey Measures

Figure 5 presents participants’ perceptions and self-reported per-
formance across different experimental conditions. In the Try First
condition with Stock LLM and Customized LLM explanations, par-
ticipants rated the test problems with average difficulty of around
2.9 on a 4-point Likert scale (ranging from "very easy" to "very dif-
ficult"), which is lower than the average difficulty rating for those
who had Answer only support (the far left facet). In the See answer
first condition, participants in the Customized LLM condition found
the test problems to be less difficult compared to those in the Stock
LLM condition. Moving to the middle facet which shows the per-
centage of participants who felt they learned something from the
practice problems, we see over 85% participants, irrespective of
timing of assistance, in Try first and See answer first conditions
who felt they learned something. This is substantially higher than
the participants in the Answer only conditions. We see a similar
trend when asked about the perceived correctness (how many of
the 2 test questions the participant thought they got right). The
participants in Stock LLM and Customized LLM reported solving
higher number of test questions correctly compared to participants
in Answer only condition (the far right facet).

These responses suggest that participants not only found the test
problems to be less difficult when supported by LLM explanations

but also felt more confident about what they had learned and their
test performance.

5 DISCUSSION

Through a large, pre-registered experiment we found that LLM-
based explanations positively impacted learning relative to seeing
only correct answers. The benefits were largest for those who at-
tempted problems on their own first before consulting LLM expla-
nations: while slightly more than half of test question responses
were correct for those who weren’t exposed to LLM explanations,
more than two-thirds of responses were correct for those who saw
LLM explanations. Surprisingly this trend held even for those par-
ticipants who were exposed to LLM explanations before attempting
to solve practice problems on their own, although the effects were
less pronounced. An accompanying qualitative analysis revealed
that these boosts in performance were indeed due to participants
adopting the strategies they were shown, and that exposure to LLM
explanations increased the amount people felt they learned and
decreased the perceived difficulty of the test problems.

Taken together, these results hold promise for the use of LLMs
as personal tutors and educational tools. That said, there are of
course several limitations to this work and many areas for future
investigation. First, GPT-4 provided correct answers and coherent
explanations for the question types that we examined in this study,
but this is far from guaranteed. LLMs are known to make errors and
provide incorrect explanations, which could have negative effects
in a tutoring scenario if students are unaware of these limitations.
Future work could investigate issues of overreliance for LLM tutor-
ing, similar to work that has been done in the domain of LLM-based
information retrieval [70].

Second, we have examined just one domain (SAT math problems)
with one response format (multiple choice). A simple extension
of this work would be to repeat the same questions but with free
response answers instead of multiple choice, which might reveal
even larger differences between conditions. For example, for the
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multi-segment trip problem in Figure 1, we found that many partic-
ipants in the Answer only condition learned to “game” the multiple
choice format by simply choosing the answer that was just lower
in magnitude than the arithmetic average. This produced a correct
answer, but, as many participants who took this approach wrote
in their qualitative description of the strategy they used, these par-
ticipants did not necessarily know why this was the case. A free
response format could provide additional insights. Likewise, we
conducted this study using math problems because the underlying
strategies can be learned fairly quickly, it is relatively straightfor-
ward to test generalization (e.g., by simply changing the numbers
in a practice problem to create a test problem), and it is easy to
objectively score responses as correct or incorrect. We have al-
ready started to develop parallel studies in other domains (e.g.,
reading comprehension). While these have proven more difficult
to construct clean experimental designs for, our pilot studies show
promise for potential benefits of LLM assistance in the learning
process.

Third, we focused on short-term learning and retention in this
experiment. While the problems we used were difficult enough for
participants that even a short break between practice and testing
surfaced differences in performance across conditions, it would be
interesting to see how differences play out on a longer timescale.
For instance, for the multi-segment trip problem, one could imagine
that participants in the Stock LLM condition were able to remember
the harmonic mean formula for a few minutes but might not retain
it weeks or months later. In contrast, the Customized LLM strategy
of assigning a number to the unspecified distance in the problem
might be easier to retain and apply in other settings over time.
Likewise, it would be interesting to see how LLM assistance affects
learning more holistically, when applied over the course of an entire
semester, for instance, instead of just for a given set of problems.

Finally, we conducted these experiments with a set of high-
quality, well-intentioned participants who were randomized into
either being exposed to LLMs or not in a relatively confined mode
of interaction. There are many differences outside of the lab set-
ting that could produce different outcomes from what we find here.
Most obviously, perhaps, is that less well-intentioned participants
(e.g., students who are simply looking for the quickest way to turn
in a homework assignment) might simply copy and paste LLM
solutions without reflecting on or trying to learn from them. This
could, of course, lead to worse outcomes across the board. Or it
could be the case that there are interesting effects coupled to when
students do (or don’t) make the decision to use LLMs for assistance—
perhaps students have a good sense for when LLMs will (and won’t)
help in learning new material, or maybe this is itself a skill to be
learned. The same could extend to how students interact with LLMs.
Whereas we simply showed students pre-generated LLM explana-
tions, the ability to engage with an LLM interactively to learn new
material could serve to further enhance learning. For example, ex-
planations could be tailored to students mistakes, or provide an
opportunity to further probe the details of a problem or related
aspects of a subject.

In closing, we hope this work offers a template for identifying
when LLMs should (or shouldn’t) be used in education, and for
highlighting the ways in which we can design and use LLMs to
benefit both students and teachers.
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A APPENDIX

You are a tutor designed to help people understand and perform better
on the types of problems you are given.

When solving problems where there are unknown numbers, try
making up a values for those number to simplify the math. Choose
these numbers so that any subsequent arithmetic works out nicely
(e.g., by choosing numbers that are whole number multiples of all
numbers mentioned in the problem to avoid decimal points or fractions
in subsequent divisions).

Here are some strategies to use when arriving at and explaining answers,
if applicable:

e When solving problems that involve speeds, emphasize the "D
= RT" strategy for "Distance = Rate * Time"

e When solving problems that involve averages (other than
speeds), emphasize the "T = AN" strategy for "Total = Aver-
age * Number"

e When given a problem with two unknown numbers involving
their sum and difference, suggest the strategy of starting with
half their sum and distributing the difference

Explain how to solve the given problem in a way which makes it easiest
for the learner to understand and remember so that they are able to
apply it to a similar problem in future. Avoid solutions that require
memorization of concepts and avoid complex notation. The learner
should be able to develop some intuition to solve similar problems.

In the end, summarize the solution in minimal number of lines so that
the learner is able to remember the method in future.

Figure 6: The pre-prompt for the Customized LLM (not visible
to participants).
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