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SPLIT-DOOR CRITERION: IDENTIFICATION OF CAUSAL
EFFECTS THROUGH AUXILIARY OUTCOMES

BY AMIT SHARMA, JAKE M. HOFMAN AND DUNCAN J. WATTS

Microsoft Research

We present a method for estimating causal effects in time series data
when fine-grained information about the outcome of interest is available.
Specifically, we examine what we call the split-door setting, where the out-
come variable can be split into two parts: one that is potentially affected by
the cause being studied and another that is independent of it, with both parts
sharing the same (unobserved) confounders. We show that under these condi-
tions, the problem of identification reduces to that of testing for independence
among observed variables, and propose a method that uses this approach to
automatically find subsets of the data that are causally identified. We demon-
strate the method by estimating the causal impact of Amazon’s recommender
system on traffic to product pages, finding thousands of examples within the
dataset that satisfy the split-door criterion. Unlike past studies based on nat-
ural experiments that were limited to a single product category, our method
applies to a large and representative sample of products viewed on the site.
In line with previous work, we find that the widely-used click-through rate
(CTR) metric overestimates the causal impact of recommender systems; de-
pending on the product category, we estimate that 50–80% of the traffic at-
tributed to recommender systems would have happened even without any rec-
ommendations. We conclude with guidelines for using the split-door criterion
as well as a discussion of other contexts where the method can be applied.

1. Introduction. The recent growth of digital platforms has generated an
avalanche of highly granular and often longitudinal data regarding individual and
collective behavior in a variety of domains of interest to researchers, including in e-
commerce, healthcare, and social media consumption. Because the vast majority of
this data is generated in nonexperimental settings, researchers typically must deal
with the possibility that any causal effects of interest are complicated by a number
of potential confounds. For example, even effects as conceptually simple as the
causal impact of recommendations on customer purchases are likely confounded
by selection effects [Lewis, Rao and Reiley (2011)], correlated demand [Sharma,
Hofman and Watts (2015)], or other shared causes of both exposure and purchase.
Figure 1(a) shows this canonical class of causal inference problems in the form of
a causal graphical model [Pearl (2009)], where X is the cause and Y is its effect.
Together U and W refer to all of the common causes of X and Y that may con-
found estimation of the causal effect, where critically some of these confounders
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(a) Canonical causal
inference problem

(b) Estimation with
back-door criterion

(c) Estimation with Z as an
instrumental variable

FIG. 1. Left: Graphical model for the canonical problem in causal inference. We wish to estimate
the effect of X on Y . W represents observed common causes of X and Y ; U represents other un-
observed (and unknown) common causes that confound observational estimates. Middle: The causal
model under the selection on observables assumption, where there are no known unobserved con-
founds U . Right: The canonical causal model for an instrumental variable Z that systematically
shifts the distribution of the cause X independently of confounds U .

(labeled W ) may be observed, while others (U ) are unobserved or even unknown.
Ideally one would answer such questions by running randomized experiments on
these platforms, but in practice such tests are possible only for the owners of the
platform in question, and even then are often beset with implementation difficul-
ties or ethical concerns [Fiske and Hauser (2014)]. As a result researchers are left
with two main strategies for making causal estimates from large-scale observa-
tional data, each with its own assumptions and limitations: either conditioning on
observables or exploiting natural experiments.

1.1. Background: Back-door criterion and natural experiments. The first and
by far the more common approach is to assume that the effect of unobserved con-
founders (U ) is negligible after conditioning on the observed variables (W ). Under
such a selection on observables assumption [Imbens and Rubin (2015)], one con-
ditions on W to estimate the effect of X on Y when these confounders are held
constant. In the language of graphical models, this strategy is referred to as the
back-door criterion [Pearl (2009)] on the grounds that the “back-door pathway”
from X to Y (via W) is blocked by conditioning on W [see Figure 1(b)] and can
be implemented by a variety of methods, including regression, stratification, and
matching [Rubin (2006), Stuart (2010)]. Unfortunately for most practical prob-
lems it is difficult to establish that all of the important confounders have been
observed. For example, consider the problem of estimating the causal impact of
a recommender system on traffic to e-commerce websites such as Amazon.com,
where X corresponds to the number of visits to a product’s webpage, and Y the
visits to a recommended product shown on that webpage. One could compute the
observed click-through rate after conditioning on all available user and product
attributes (e.g., user demographics, product categories and popularities, etc.), as-
suming that these features constitute a proxy for latent demand. Unfortunately,
there are also many potentially unobserved confounders (e.g., advertising, media
coverage, seasonality, etc.) that impact both a product and its recommendations,
which if excluded would render the back-door criterion invalid.
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Motivated by the limitations of the back-door strategy, a second main approach
is to identify an external event that affects the treatment X in a way that is ar-
guably random with respect to potential confounds. The hope is that such varia-
tion, known as a natural experiment [Dunning (2012)], can serve as a substitute
for an actual randomized experiment. Continuing with the problem of estimating
the causal impact of recommendations, one might look for a natural experiment in
which some products experience large and sudden changes in traffic, for instance
when a book is featured on Oprah’s book club [Carmi, Oestreicher-Singer and
Sundararajan (2012)]. Assuming that the increase in traffic for the book is inde-
pendent of demand for its recommendations, one can estimate the causal effect of
the recommender by measuring the change in sales to the recommended products
before and after the book was featured, arguing that these sales would not have
happened in the absence of the recommender. Such events provide instrumental
variables that identify the effect of interest by shifting the distribution of the cause
X independently of unobserved confounds U [Angrist, Imbens and Rubin (1996)].
Figure 1(c) depicts this in a graphical model, where the additional observed vari-
able Z denotes the instrumental variable.

These two main approaches trade off critical goals of identification and gen-
eralization in causal inference. The estimate for back-door conditioning is typi-
cally derived using all available data, but provides no identification guarantees in
the presence of unobserved confounders. Instrumental variables, in contrast, pro-
vide identification guarantees even in the presence of unobserved confounders, but
these guarantees apply only for local subsets of the available data—the relatively
rare instances for which a valid instrument that exogenously varies the cause X

is known (e.g., lotteries [Angrist, Imbens and Rubin (1996)], variation in weather
[Phan and Airoldi (2015)], or sudden, large events [Dunning (2012), Rosenzweig
and Wolpin (2000)]).

1.2. The “split-door” criterion. In this paper we introduce a causal identifi-
cation strategy that incorporates elements of both the back-door and natural exper-
iment approaches, but that applies in a different setting. Rather than conditioning
on observable confounds W or exploiting sources of independent variation in the
cause X, we instead look to auxiliary outcomes [Mealli and Pacini (2013)] to iden-
tify subsets of the data that are causally identified. Specifically, our strategy applies
when the outcome variable Y can be effectively “split” into two constituents: one
that is caused by X and another that is independent of it. Figure 2(a) shows the
corresponding causal graphical model, where YR denotes the “referred” outcome
of interest affected by X and YD indicates the “direct” constituent of Y that does
not directly depend on X. Returning to the recommender system example, YR cor-
responds to recommendation click-throughs on a product whereas YD would be all
other traffic to that product that comes through channels such as direct search or
browsing. Whenever such fine-grained data on Y is available, we show that it is
possible to reduce causal identification to an independence test between the cause
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(a) General split-door model: Outcome Y is
split into YR and YD

(b) Valid split-door model: Data subsets where
X is independent of UY

FIG. 2. Panel (a) illustrates the canonical causal inference problem when outcome Y can be split
up into two components. For clarity, unobserved confounders U are broken into UY that affects both
X and Y , and UX that affects only X. The split-door criterion finds subsets of the data where the
cause X is independent of UY by testing independence of X and YD , leading to the unconfounded
causal model shown in Panel (b).

X and the auxiliary outcome YD . Because this strategy depends on the availabil-
ity of a split set of variables for Y , we call it the split-door criterion for causal
identification, by analogy with the more familiar back-door criterion.

Although we make no assumptions about the functional form of relationships
between variables, a crucial assumption underlying the split-door criterion is con-
nectedness; that is, that the auxiliary outcome YD must be affected (possibly dif-
ferently) by all causes that also affect YR . As we discuss in more detail in Sec-
tion 5, this assumption is plausible in scenarios such as online recommender sys-
tems, where recommended products are reachable through multiple channels (e.g.,
search or direct navigation) and it is unlikely that demand for a product manifests
itself exclusively through only one of these channels. More generally, the con-
nectedness assumption is expected to hold in scenarios where direct and referred
outcomes incur similar cost, which makes it unlikely that something that causes
the outcome does so only when referred through X, but never directly.

Under the above assumption, the split-door criterion seeks to identify subsets of
the data where causal identification is possible. In this sense, the method resembles
a natural experiment, except that instead of looking for an instrument that creates
variation in X, we look for variations in X directly. As in a natural experiment,
however, it is important that any such variation in X is independent of potential
confounds. For instance in the example above, it is important that a sudden burst
of interest in a particular book is not correlated with changes in latent demand
for its recommendations. To verify this requirement, the split-door criterion relies
on a statistical test to select for cases where there are no confounds (observed or
otherwise) between X and YR . Specifically, we show that given a suitable auxiliary
outcome YD , and a test to establish if X and YD are independent, the causal effect
between X and YR can be identified. Furthermore, since this test involves two
observed quantities (X and YD), we can systematically search for subsets of the
data that satisfy the required condition, potentially discovering a large number of
cases in which we can identify the causal effect of X on YR .
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We illustrate this method with a detailed example in which we estimate the
causal impact of Amazon.com’s recommendation system using historical web
browsing data. Under the above assumptions on the dependence between referred
and direct visits to a product’s webpage, we show how the criterion provides a
principled mechanism for determining which subsets of the data to include in the
analysis. The split-door criterion identifies thousands of such instances in a nine-
month period, comparable in magnitude to a manually tuned approach using the
same data [Sharma, Hofman and Watts (2015)], and an order of magnitude more
than traditional approaches [Carmi, Oestreicher-Singer and Sundararajan (2012)].
Further, the products included in our analysis are representative of the overall
product distribution over product categories on Amazon.com, thereby improving
both the precision and generalizability of estimates. Consistent with previous work
[Sharma, Hofman and Watts (2015)], we find that observational estimates of rec-
ommendation click-through rates (CTRs) overstate the actual effect by anywhere
from 50% to 80%, calling into question the validity of popular CTR metrics for
assessing the impact of recommendation systems. For applications to other online
and offline scenarios, we provide an R package1 that implements the split-door
criterion.

1.3. Outline of paper. The remainder of this paper proceeds as follows. In Sec-
tion 2 we start with a formal definition of the split-door criterion and give precise
conditions under which the criterion holds. For clarity we provide proofs for causal
identification both in terms of the causal graphical model from Figure 2(a) and also
in terms of structural equations. In Section 3 we propose a simple, scalable algo-
rithm for identifying causal effects using the split-door criterion. Then in Section 4,
we explain more formally how the split-door criterion differs from the instrumen-
tal variables and back-door methods mentioned above. Section 5 presents details
about the Amazon.com data and an application of the split-door criterion to esti-
mate the causal impact of its recommendation system. In Section 6 we then discuss
limitations of the split-door criterion as well as other settings in which the crite-
rion applies, arguing that many existing datasets across a variety of domains have
the structure that outcomes of interest can be decomposed into their “direct” and
“referred” constituents. We conclude with a prediction that as the size and gran-
ularity of available datasets, along with the number of variables in them, increase
at an ever faster rate, data-driven approaches to causal identification will become
commonplace.

2. The split-door identification criterion. The split-door criterion can be
used whenever observed data is generated from the model shown in Figure 2(a).
Here X represents the cause of interest, YR denotes the “referred” portion of the

1URL: https://www.github.com/amit-sharma/splitdoor-causal-criterion.

https://www.github.com/amit-sharma/splitdoor-causal-criterion
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outcome affected by it, and YD indicates the “direct” part of the outcome which
does not directly depend on X. We denote the overall outcome by Y = YR + YD .
We let UY represent all unobserved causes of Y , some of which may also be com-
mon causes of X, hence the arrow from UY to X. Additional latent factors that
affect only X are captured by UX . Both UX and UY can be a combination of many
variables, some observed and some unobserved. (For full generality, the analysis
presented here assumes that all confounds are unobserved.) As noted earlier, the
unobserved variables UY create “back-door pathways” that confound the causal ef-
fect of X on Y , resulting in biased estimates. The central idea behind the split-door
criterion is that we can use an independence test between the auxiliary outcome
YD and X to systematically search for subsets of the data that are free of these
confounds and do not contain back-door pathways between X and YR . In other
words, we can conclude that such subsets of the data were generated from the un-
confounded causal model shown in Figure 2(b), and therefore the causal effect of
X on Y can be estimated directly from these data. Importantly, identification of the
causal effect rests on the assumption that no part of UY causes one part of Y and
not the other.

2.1. The split-door criterion through a graphical model. Here we formalize
the intuition above in the causal graphical model framework. To identify the causal
effect, we make the following two assumptions. The first pertains to connectedness
of the causal model.

ASSUMPTION 1 (Connectedness). Any unobserved confounder UY that
causes both X and YR also causes YD and the causal effect of such UY on YD

is nonzero.

Note that Assumption 1 requires only that the causal effect of UY on YD be
nonzero, without any requirements on the size of the effect(s) involved. That said,
it is a strong requirement in general, as it applies to all sub-components of UY and
thus involves assumptions about potentially high-dimensional, unobserved vari-
ables. Whenever YD and YR are components of the same variable it is plausible
that they share causes, but one still must establish that this condition holds to en-
sure causal identification. It is instructive to compare this assumption to the strict
independence assumptions involving unobserved confounders required by meth-
ods such as instrumental variables [Angrist, Imbens and Rubin (1996)].

The second assumption, which relates statistical and causal independence be-
tween observed variables, is standard for many methods of causal discovery from
observational data.

ASSUMPTION 2 (Independence). If X and YD are statistically independent,
then they are also causally independent in the graphical model of Figure 2(a).
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Here causal independence between two variables means that they share no com-
mon causes and no directed path in the causal graphical model leads from one to
another. More formally, the two variables are “d-separated” [Pearl (2009)] from
each other. Thus, Assumption 2 is a variant of the Faithfulness or Stability assump-
tions in causal graphs with latent unobserved variables [Pearl (2009), Spirtes, Gly-
mour and Scheines (2000)]. In the causal model shown in Figure 2(a), for instance,
this assumption rules out the possibility of an event where the observed variables
X and YD are found to be statistically independent, but UY still affects both of
them and the observed independence in the data results from UY ’s effect cancel-
ing out exactly over the path X–UY –YD . In other words, this assumption serves
to rule out an (unlikely) event where incidental equality of parameters or certain
data distributions render two variables statistically independent even though they
are causally related.

Under Assumptions 1 and 2, we can show that statistical independence of X

and YD ensures that X is not confounded by UY . First, we provide a result about
the resulting causal graph structure when X ⊥⊥ YD .

LEMMA 1. Let X, YR , and YD be three observed variables corresponding to
the causal model in Figure 2(a), where UY refers to unobserved causes of YR . If the
connectedness (1) and independence (2) assumptions hold, then X ⊥⊥ YD implies
that the edge UY → X does not exist or that UY is constant.

PROOF (ARGUMENT). The proof can be completed directly from Figure 2(a)
and properties of a causal graphical model.

X ⊥⊥ YD implies that the causal effect of UY on YD and X somehow cancels
out on the path X ← UY → YD . By Assumption 2, this cancellation is not due
to incidental equality of parameters or a particular data distribution, but rather a
property of the causal graphical model. Therefore, this can only happen if:

(i) UY is constant (and thus blocks the path), or
(ii) One of the edges exists trivially (does not have a causal effect). Using As-

sumption 1, UY has a nonzero effect on YD . Then, the only alternative is that the
X ← UY edge does not exist, leading to the unconfounded causal model in Fig-
ure 2(b).

PROOF. We provide a proof by contradiction using the principle of d-
separation [Pearl (2009)] in a causal graphical model.

Let us suppose X ⊥⊥ YD , and that the UY → X edge exists and UY is not con-
stant.

Using the rules of d-separation on the causal model in Figure 2(a), the path
X–UY –YD corresponds to

(X ⊥⊥ YD|UY )G,(2.1)

(X �⊥⊥ YD)G,(2.2)
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where the notation (·)G refers to d-separation under a causal model G. In our case,
G corresponds to the causal model in Figure 2(a).

However, using Assumption 2, statistical independence of X and YD implies
causal independence, and thus, d-separation of X and YD .

(X ⊥⊥ YD)G.(2.3)

Equations (2.2) and (2.3) result in a contradiction. To resolve:

(i) Either UY is constant and thus (2.1) implies (X ⊥⊥ YD)G holds, or
(ii) The path X–UY –YD does not exist. Using Assumption 1 of dependence of

YD on UY , the only possibility is that the X ← UY edge does not exist. �

We now show that Lemma 1 removes confounding due to UY and that the ob-
servational estimate P(YR|X = x) is also the causal estimate.

THEOREM 2.1 (Split-door Criterion). Under the assumptions of Lemma 1, the
causal effect of X on YR is not confounded by UY and is given by:

P
(
YR|do(X = x)

) = P(YR|X = x),

where do(X = x) refers to experimental manipulation of X and YR|X = x refers
to the observed conditional distribution.

PROOF (ARGUMENT). Lemma 1 leads to two cases:
(i) By the back-door criterion [Pearl (2009)], if UY is constant, then X and YR

are unconfounded, because the only back-door path between X and YR contains
UY on it.

(ii) Similarly, if the UY → X edge does not exist, then X and YR are uncon-
founded because absence of the UY → X edge removes the back-door path be-
tween X and YR .

In both cases, unconfoundedness implies that the effect of X on YR can be
estimated using the observational distribution. �

PROOF. The proof follows from an application of the second rule of do-
calculus [Pearl (2009)]:

(2.4) P
(
Y|do(Z = z),W

) = P(Y|Z = z,W) if (Y ⊥⊥ Z|W)GZ ,

where GZ refers to the underlying causal graphical model with all outgoing edges
from Z removed.

Substituting Y = YR , Z = X, GX corresponds to the causal model from Fig-
ure 2(a) without the X → YR edge. Using Lemma 1, two cases exist:

(i) UY is constant.
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Let W = UY . Under the modified causal model GX without the X → YR edge,
the path X–UY –YR is the only path connecting X and YR , which leads to the
following d-separation result:

(YR ⊥⊥ X|UY )GX
.(2.5)

Combining Rule (2.4) and the above d-separation result, we obtain

P
(
YR|do(X = x),UY

) = P(YR|X = x,UY ) = P(YR|X = x),

where the last equality holds because UY is constant throughout.
(ii) The edge UY → X does not exist.
Let W =∅. Under the modified causal model GX without the X → YR edge, X

and YR are trivially d-separated because no path connects them without the edge
UY → X.

(2.6) (YR ⊥⊥ X)GX
.

From Rule (2.4) and the above d-separation result, we obtain

P
(
YR|do(X = x)

) = P(YR|X = x). �

2.2. The split-door criterion through structural equations. Although we have
already analyzed the split-door criterion in terms of the causal graphical model in
Figure 2(a), for expositional clarity we note that it is also possible to do the same
using structural equations. Specifically, we can write three structural equations:

x = g(ux,uy, εx), yr = f (x,uy, εyr), yd = h(uy, εyd),(2.7)

where εx , εyr , and εyd are mutually independent, zero-mean random variables that
capture modeling error and statistical variability. As in Assumption 1, we assume
that UY affects both YD and YR . In general, the causal effects among variables may
not be linear; however, for the purpose of building intuition we rewrite the above
equations in linear parametric form:

(2.8) x = ηux + γ1uy + εx, yr = ρx + γ2uy + εyr , yd = γ3uy + εyd,

where ρ is the causal parameter of interest, and εx , εyr, εyd are independent errors
in the regression equations. The split-door criterion requires independence of X

and YD , which in turn implies that Cov(X,YD) = 0:

0 = Cov(X,YD)

= E[XYD] − E[X]E[YD]
= E

[
(ηux + γ1uy + εx)(γ3uy + εyd)

] − E[ηux + γ1uy + εx]E[γ3uy + εyd ]
= γ1γ3 E[UY .UY ] − γ1γ3 E[UY ]E[UY ]
= γ1γ3 Var(UY ).
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Assuming that YD is affected by UY (and therefore γ3 is not 0), the above can
be zero only if γ1 = 0, or if UY is constant (Var[UY ] = 0). In both cases, X be-
comes independent of UY and the following regression can be used as an unbiased
estimator for the effect of X on YR :

(2.9) yr = ρx + ε′
yr ,

where ε′
yr denotes an independent error.

3. Applying the split-door criterion. The results of the previous section mo-
tivate an algorithm for applying the split-door criterion to observational data.
Specifically, given an empirical test for independence between the cause X and
the auxiliary outcome YD , we can select instances in our data that pass this test
and satisfy the split-door criterion. In this section we develop such a test for time
series data, resulting in a simple, scalable identification algorithm.

At a high level, the algorithm works as follows. First, divide the data into
equally-spaced time periods τ such that each period has enough data points to
reliably estimate the joint probability distribution P(X,YD). Then, for each time
period τ :

1. Determine whether X and YD are independent using an empirical indepen-
dence test.

2. If X and YD are determined to be independent, then the current time period τ

corresponds to a valid split-door instance. Use the observed conditional probability
P(YR|X = x) to estimate the causal effect in the time period τ . Otherwise, exclude
the current time period from the analysis.

3. Average over all time periods where X ⊥⊥ YD to obtain the mean causal
effect of X on YR .

Implementing the algorithm requires making suitable choices for an independence
test and also its significance level, taking into account multiple comparisons. In
the following sections, we discuss these choices in detail, as well as sensitivity of
the method to violations in our assumptions.

3.1. Choosing an independence test. Each X–YD pair in Step 1 provides two
vectors of length τ with observed values for X and YD . The key decision is whether
these vectors are independent of each other. In theory any empirical test that reli-
ably establishes independence between X and YD is sufficient to identify instances
where the split-door criterion applies. For instance, assuming we have enough data,
we could test for independence by comparing the empirical mutual information to
zero [Pethel and Hahs (2014), Steuer et al. (2002)]. In practice, however, because
we consider subsets of the data over relatively small time periods τ , there may be
substantial limits to the statistical power we have in testing for independence. For
example, it is well known that in small sample sizes, testing for independence via
mutual information estimation can be heavily biased [Paninski (2003)].



SPLIT-DOOR CRITERION FOR CAUSAL IDENTIFICATION 2709

Thus, when working with small time periods τ we recommend the use of exact
independence tests and randomization inference [Agresti (1992, 2001), Lydersen
et al. (2007)].2 In general, this approach involves repeatedly sampling randomized
versions of the empirical data to simulate the null hypothesis and then comparing
a test statistic on the observed data to the same on the null distribution. Specif-
ically, for each X–YD pair, we simulate the null hypothesis of independence be-
tween X and YD by replacing the observed X vector with a randomly sampled
vector from the overall empirical distribution of X values. From this simulated
X–YD instance, we compute a test statistic that captures statistical dependence,
such as the distance correlation, which can detect both nonlinear and linear de-
pendence [de Siqueira Santos et al. (2014), Székely, Rizzo and Bakirov (2007)].
We then repeat this procedure many times to obtain a null distribution for the test
statistic of this X–YD pair. Finally, we compute the probability p of obtaining a
test statistic as extreme as the observed statistic under the null distribution, and
select instances in which the probability p is above a pre-chosen significance level
α.

3.2. Choosing a significance level. In contrast to standard hypothesis testing
where one is looking to reject the null hypothesis that two variables are indepen-
dent and therefore thresholds on a small p-value, here we are looking for inde-
pendent X–YD pairs that are highly probable under the null and thus want a large
p-value. In other words, we are interested in a low type II error (or false nega-
tives), in contrast to standard null hypothesis testing, where the focus is on type
I errors (false positives) and hence significance levels are set low. Therefore, one
way to choose a significance level would be to choose α as close as possible to 1 to
minimize type II errors when X and YD are dependent. At the same time, we need
to ensure that the test yields adequate power for finding independent X–YD pairs.
Unlike a conventional hypothesis test for dependent pairs, power for our test is
1 − α, the probability that the test declares an X–YD pair to be independent when
it is actually independent. As we increase α, type II errors decrease, but power also
decreases.

Complicating matters, the combination of low power and a large number of
hypothesis tests raises concerns about falsely accepting pairs that are actually de-
pendent. As an extreme example, even when all X–YD pairs in a given dataset are
dependent, some of them will pass the independence test simply due to random
chance. Therefore, a more principled approach to selecting α comes through esti-
mating the expected fraction of erroneous split-door instances returned by the pro-
cedure, which we refer to as φ. As described in Appendix A, we apply techniques
from the multiple comparisons literature [Farcomeni (2008), Liang and Nettleton
(2012), Storey (2002)] to estimate this fraction φ for any given significance level.

2When X and YD are discrete variables, methods such as Fisher’s exact test are appropriate. If,
however, X and YD are continuous—as is this case for the example we study in Section 5—we
recommend the use of resampling-based randomization inference for establishing independence.
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(a) General model: Unobserved variables split
into UY and VY

(b) Invalid split-door model: X is independent
of UY but not VY

FIG. 3. Violation of the connectedness assumption. Causes for X and YR consist of two compo-
nents, UY and VY , where VY does not affect YD and hence is undetectable by the split-door criterion.
In the general causal model shown in Panel (a), X → YR is confounded by both UY and VY . In the
causal model corresponding to a split-door instance in Panel (b), X → YR is still confounded by the
common cause VY .

3.3. Sensitivity to identifying assumptions. The above algorithm yields a
causal estimate only if the identifying assumptions of connectedness and indepen-
dence are satisfied. Independence is based on the standard faithfulness assumption
in causal discovery [Spirtes, Glymour and Scheines (2000)]. Connectedness, on
the other hand, requires justification based on domain knowledge. Even when the
connectedness assumption seems plausible, we recommend a sensitivity analysis
to assess the effects of potential violations to this assumption.

From Assumption 1, violation of connectedness implies that there exist some
unobserved variables that affect X and YR but not YD . Figure 3(a) shows this
scenario, which is identical to the model in Figure 2(a) with the addition of an
unobserved variable VY that affects X and YR , but not YD . Applying the split-door
criterion in this setting ensures that there is no effect of UY on X, but does not
alleviate possible confounds from VY , as shown in Figure 3(b). Note that this is
analogous to the situation in back-door-based methods when one fails to condi-
tion on unobserved variables that affect both the treatment and outcome. Corre-
spondingly, sensitivity analyses designed for back-door-based methods [Carnegie,
Harada and Hill (2016), Harding (2009), Rosenbaum (2010), VanderWeele and
Arah (2011)] can be readily adapted to analyzing split-door instances. In addition,
noting that split-door estimates represent averages over all discovered split-door
instances, we introduce an additional sensitivity parameter κ that denotes the frac-
tion of instances for which connectedness is violated. In Appendix B we provide a
derivation showing that sensitivity for the split-door estimate reduces to sensitivity
for back-door methods and conduct this analysis for the application presented in
Section 5.

4. Connections to other methods. The split-door criterion is an example of
methods that use empirical independence tests to identify causal effects under cer-
tain assumptions [Cattaneo, Frandsen and Titiunik (2015), Grosse-Wentrup et al.
(2016), Jensen et al. (2008), Sharma, Hofman and Watts (2015)]. By searching for
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Graphical
model

Description Untestable
assumptions

Limitations Recommendations
example

(a) Back-door
criterion

Condition on
observed
confounders W to
isolate the
treatment effect.

X ⊥⊥ U or
Y ⊥⊥ U

Unlikely that there are
no unobserved
confounders U .

Regress
click-throughs on
product attributes
and direct visits to
recommended
product.

(b) Instrumental
variable

Analyze subset of
data that has
independent
variation in the
treatment.

Z ⊥⊥ U and
Z ⊥⊥ Y |X,U

Difficult to find a
source of exogenous
variation in the
treatment.

Measure marginal
click-throughs on
products that
experience large,
sudden shocks in
traffic.

(c) Split-door
criterion

Analyze subset of
data where the
auxiliary outcome
YD is independent
of the treatment.

YD �⊥⊥ UY Requires dependency
between an auxiliary
outcome and all
confounders.

Measure marginal
click-throughs on
all pairs of
products that have
uncorrelated direct
traffic.

FIG. 4. Comparison of methods for estimating the effect of a treatment X on an outcome Y . W and
U represent all observed and unobserved confounders, respectively, that commonly cause both X

and Y .

subsets of the data where desired independence holds, it also shares some prop-
erties with natural experiment methods such as instrumental variables and condi-
tioning methods such as regression. We discuss these connections below; Figure 4
provides a summary for easy comparison.

4.1. Instrumental variables. Both the split-door criterion and instrumental
variable (IV) methods can be used to exploit naturally occurring variation in sub-
sets of observational data to identify causal effects. Importantly, however, they
make different assumptions. In IV methods, one uses an auxiliary variable Z,
called an instrument, that is assumed to be exogenous and that systematically shifts
the distribution of the cause X. The validity of an instrument relies on two addi-
tional assumptions: first that it is effectively random with regard to potential con-
founders (Z ⊥⊥ U ), and second that the instrument affects the outcome Y only
through the cause X (Z ⊥⊥ Y |X,U ). Both of these conditions involve indepen-
dence claims between observed and unobserved variables, making them impossi-
ble to test in practice [Dunning (2012)].

The split-door criterion also relies on an auxiliary variable, but one that relates to
the outcome instead of the treatment. Specifically, it exploits an auxiliary outcome
YD that serves as a proxy for unobserved common causes UY under three impor-
tant assumptions. The first is that the cause X does not affect YD directly. The
second assumption requires that all unobserved confounders (between the cause
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and outcome) that affect YR also affect YD . As with IV methods above, these two
assumptions involve knowledge of an unobserved variable and, as a result, can-
not be tested. The third assumption requires independence between the cause X

and the auxiliary outcome YD . Since both of these variables are observed, this as-
sumption can be tested empirically so long as we are in the standard setting where
statistical independence implies causal independence (Assumption 2), equivalent
to the assumption of faithfulness [Spirtes, Glymour and Scheines (2000)].

It is difficult to compare these two sets of assumptions in general, but in different
scenarios, one of these methods may be more suitable than the other. If a valid
instrument is known to exist, for instance through changes in weather or as a result
of a lottery, the variation it produces can and should be exploited to identify causal
effects of interest. The split-door criterion, in contrast, is most useful when one
suspects there is random variation in the data, but cannot identify its source a priori.
In particular, it is well suited for large-scale data where the first two assumptions
mentioned above are plausible, such as in digital or online systems.

4.2. Back-door criterion. Alternatively, the split-door criterion can be inter-
preted as using YD as a proxy for all confounders UY , and estimating the causal
effect whenever YD (and hence UY ) is independent of X. Viewed this way, the
split-door approach may appear to be nothing more than a variant of the back-door
criterion where one conditions on YD instead of UY , however there are two key
differences between the two methods.

First, substituting YD for UY in the back-door criterion assumes that YD is a
perfect proxy for UY . This is a much stronger assumption than requiring that YD

be simply affected by UY , because any difference (e.g., measurement error) be-
tween YD and UY can invalidate the back-door criterion [Spirtes, Glymour and
Scheines (2000)]. Second, the two methods differ in their approach to identifi-
cation. The split-door criterion controls for the effect of unobserved confounders
by finding subsets of data where X is not affected by UY , whereas the back-door
criterion conditions on a proxy for UY to nullify the effect of unobserved con-
founders. Therefore, by directly controlling at the time of data selection, the split-
door criterion focuses on admitting a subset of the data for analysis and simplifies
effect estimation, whereas methods based on back-door criterion such as regres-
sion, matching, and stratification process the whole dataset and extract estimates
via statistical models [Morgan and Winship (2014)].

To illustrate these differences, we compare mathematical forms of the split-door
and back-door criteria in terms of regression equations. Conditioning on YD using
regression will lead to the following equation

yr = ρ′′x + βyd + ε′′
yr ,

applied to the entire dataset. In contrast the split-door criterion leads to the simpler
equation (as shown earlier in Section 2.2)

yr = ρx + ε′
yr ,

applied only to subsets of data where X and YD are independent.
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4.3. Methods based on empirical independence tests. Finally, the split-door
criterion is similar to recent work that proposes a data-driven method for deter-
mining the appropriate window size in regression discontinuity designs [Cattaneo,
Frandsen and Titiunik (2015), Cattaneo, Titiunik and Vazquez-Bare (2017)]. In
regression discontinuities, treatment (e.g., acceptance into a program) is assigned
based on whether an observed variable (e.g., a test score) is above or below a pre-
determined cutoff. The assumption is that one can compare outcomes for those just
above and just below the cutoff to estimate causal effects, but the central problem
is how far from the cutoff this assumption holds. The authors present a data-driven
method for selecting a window by testing for independence between the treatment
and pre-determined covariates that are uncoupled to the outcome of interest. This
approach resembles the split-door criterion in that both use independence tests to
determine which subsets of the data to include when making a causal estimate. As
a result, both methods are subject to concerns around multiple hypothesis testing,
although the regression discontinuity setting typically involves many fewer com-
parisons than the split-door criterion (dozens instead of the thousands we analyze
here) and occurs over nested windows. For these reasons we treat multiple com-
parisons differently, estimating the error rate in identifying independent instances
instead of adjusting nominal thresholds to try to eliminate errors.

5. Application: Impact of a recommender system. We now apply the split-
door criterion to the problem of estimating the causal impact of Amazon.com’s
recommender system. Recommender systems have become ubiquitous in online
settings, providing suggestions for what to buy, watch, read, or do next [Ricci,
Rokach and Shapira (2011)]. Figure 5 shows an example of one of the millions of
product pages on Amazon.com, where the main item listed on the page, or focal
product, is the book “Purity” by Jonathan Franzen. Listed alongside this item are a
few recommended products—two written by Franzen and one by another author—
suggested by Amazon as potentially of interest to a user looking for “Purity.” Gen-
erating and maintaining these recommendations takes considerable resources, and
so a natural question one might ask is how exactly exposure to these recommended
products changes consumer activity.

While simple to state, this question is difficult to answer because it requires an
estimate of the counterfactual of what would have happened had someone visited
a focal product but had not been exposed to any recommendations. Specifically,
we would like to know how much traffic recommender systems cause, over and
above what would have happened in their absence. Naively one could assume that
users would not have viewed these other products without the recommender sys-
tem, and as a result simply compute the observed click-through rate on recom-
mendations [Grau (2009), Mulpuru (2006)]. As discussed earlier, however, this
assumption ignores correlated demand: users might have found their way to some
of these recommended products anyway via direct search or browsing, which we
collectively refer to as “direct traffic.” For instance, some users who are interested
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FIG. 5. Screenshot of a focal product, the book “Purity,” and its recommendations on Amazon.com.

in the book “Purity” might be fans of Franzen in general, and so might have di-
rectly searched on Amazon.com for his other works such as “Freedom” or “The
Corrections,” even if they had not been shown recommendations linking to them.
The key to properly estimating the causal impact of the recommender, then, lies in
accounting for this correlated demand between a focal product and its recommen-
dations.

In this section we show how the split-door criterion can be used to eliminate the
issue of correlated demand by automatically identifying and analyzing instances
where demand for a product and one (or more) of its recommendations are in-
dependent over some time period τ . We do so by first formalizing this problem
through a causal graphical model of recommender system traffic, revealing a struc-
ture amenable to the split-door criterion. Then we apply the criterion to a large-
scale dataset of web browsing activity on Amazon.com to discover thousands of
instances satisfying the criterion. Our results show that a naive observational es-
timate of the impact of this recommender system overstates the causal impact on
the products analyzed by a factor of at least two. We conclude with a number of
robustness checks and comments on the validity and generalizability of our results.

5.1. Building the causal model. The above discussion highlights that unob-
served common demand for both a focal product and its recommendations can
introduce bias in naive estimates of the causal click-through rate (CTR) on recom-
mendations. Referring back to Figure 2(a), we formalize the problem as follows,
with variables aggregated for each day:

• X denotes the number of visits to the focal product i’s webpage.
• YR denotes recommendation visits, the number of visits to the recommended

product j through clicks on the recommendation for product j on product i’s
webpage.



SPLIT-DOOR CRITERION FOR CAUSAL IDENTIFICATION 2715

• YD denotes direct visits, the number of visits to product j that did not occur
through clicking on a recommendation. These could be visits to j from Ama-
zon’s search page or through direct visits to j ’s webpage.

• UY denotes unobserved demand for product j , including both recommendation
click-throughs and direct visits.

• UX represents the part of unobserved demand for product i that is independent
of UY .

To apply the split-door criterion, we must investigate the plausibility of the con-
nectedness and independence assumptions from Section 2.1. First, the connected-
ness assumption states that both YR and YD are affected (possibly differently) by
the same components of demand UY for the product j . As mentioned above, con-
nectedness is especially plausible in the context of online recommender systems
where products are easily reachable through multiple channels (e.g., search, direct
navigation, or recommendation click-through) and it is unlikely that demand for
a product manifests itself exclusively through only one of these channels. Specifi-
cally, it is unlikely that there exists a component of demand for a product that man-
ifests itself only through indirect recommendation click-throughs, but not through
direct visits. Put another way, for connectedness not to hold, it would have to be
the case that users would have demand for a product only if they arrived via a rec-
ommendation link, but not through other means. To the best of our knowledge no
path-specific feature of this sort exists on Amazon; thus, we expect the connected-
ness assumption to hold.

Second, with respect to the independence assumption, although we cannot rule
out coincidental cancellation of effects that result in X ⊥⊥ YD and violate the as-
sumption, we expect such events to be unlikely over a large number of product
pairs. Furthermore, for complementary product recommendations (which are the
focus of this paper), we can logically rule out violation of the independence as-
sumption because the demand for two complementary products are expected to be
positively correlated with each other. Therefore, it is reasonable to assume that the
unobserved demand UY (and all its sub-components) affect both X and YD in the
same direction. For instance, let the effect of UY be increasing for both X and YD .
Then the independence assumption is satisfied because the effect of UY cannot
be canceled out on the path X ← UY → YD if the effects of UY (and any of its
sub-components) on X and YD are all positive. Given the above assumptions, the
same reasoning from Section 2.1 allows us to establish that X ⊥⊥ YD is a sufficient
condition for causal identification.

5.2. Browsing data. Estimating the causal impact of Amazon.com’s recom-
mender system requires fine-grained data detailing activity on the site. To ob-
tain such information, we turn to anonymized browsing logs from users who in-
stalled the Bing Toolbar and consented to provide their anonymized browsing data
through it. These logs cover a period of nine months from September 2013 to May
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2014 and contain a session identifier, an anonymous user identifier, and a time-
stamped sequence of all nonsecure URLs that the user visited in that session. We
restrict our attention to browsing sessions on Amazon.com, which leaves us with
23.4 million page visits by 2.1 million users spanning 1.3 million unique products.
Of these products, we examine those that receive a minimum of 10 page visits on
at least one day in this time period, resulting in roughly 22,000 focal products of
interest.

Amazon shows many kinds of recommendations on its site. We limit our anal-
ysis to the “Customers who bought this also bought” recommendations depicted
in Figure 5, as these recommendations are the most common and are shown on
product pages from all product categories. To apply the split-door criterion, we
need to identify focal product and recommended product pairs from the log data
and separate out traffic for recommended products into direct (YD) and recom-
mended (YR) visits. Fortunately it happens to be the case that Amazon makes this
identification possible by explicitly embedding this information in their URLs.
Specifically, given a URL for an Amazon.com page visit, we can use the ref, or
referrer, parameter in the URL to determine if a user arrived at a page by clicking
on a recommendation or by other means. We then use the sequence of page visits
in a session to identify focal and recommended product pairs by looking for focal
product visits that precede recommendation visits. Further details about the tool-
bar dataset and construction of focal and recommended product pairs can be found
in past work [Sharma, Hofman and Watts (2015)].

5.3. Applying the split-door criterion. Having argued for the assumptions un-
derlying the split-door criterion and extracted the relevant data from browsing logs,
the final step in estimating the causal effect of Amazon.com’s recommendation
system is to use the criterion to search for instances where a product and its rec-
ommendation have uncorrelated demand.

Recalling Section 3, we employ a randomization test to search for 15-day time
periods that fail to reject the null hypothesis that direct visits to a product and one
(or more) of its recommended products are independent. The choice of 15 days
represents a trade-off between two requirements: first, a time period large enough
to yield reliable estimates; and second, a time period short enough that Amazon’s
recommendations for any given product are unlikely to have changed within that
window.

The full application of the split-door criterion is as follows. For each focal prod-
uct i and each τ = 15 day time period:

1. Compute X(i), the number of visits to the focal product on each day, and Y
(ij)
R ,

the number of click-throughs to each recommended product j . Also record the
total direct visits Y

(j)
D to each recommended product j .
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(a) Accepted at α = 0.95 (b) Rejected at α = 0.95

FIG. 6. Examples of time series for focal and recommended products that are (a) accepted or (b)
rejected by the split-door criterion at a significance level of α = 0.95 for the independence test.

2. For each recommended product j , use the randomization test from Section 3.1
to determine if X(i) is independent of Y

(j)
D at a pre-specified significance level.3

• If X(i) is found to be independent of Y
(j)
D , compute the observed click-

through rate (CTR), ρ̂ijτ = (
∑τ

t=1 Y
(ij)
R )/(

∑τ
t=1 X(i)), as the causal estimate

of the CTR. Otherwise ignore this product pair.

3. Aggregate the causal CTR estimate over all recommended products to compute
the total causal CTR per focal product, ρ̂iτ .

Finally, average the causal CTR estimate over all time periods and focal products
to arrive at the mean causal effect, ρ̂, and compute the rate of erroneous split-door
instances φ to estimate error in this estimate, as detailed in Appendices A and C.

5.4. Results. Applying the above algorithm results in over 114,000 potential
split-door instances, where each instance consists of a pair of focal and recom-
mended product over a 15-day time period. At a significance level of α = 0.95,
we obtain more than 7000 instances that satisfy the split-door criterion. Consistent
with previous work [Sharma, Hofman and Watts (2015)], the corresponding causal
CTR estimate ρ̂ is 2.6% (with the error bars spanning 2.0% to 2.7%), roughly one
quarter of the naive observational estimate of 9.6% arrived at by computing the
click-through rate across all focal and recommended product pairs. Put another
way, these results imply that nearly 75% of page visits generated via recommen-
dation click-throughs would likely occur in the absence of recommendations.

Figure 6(a) shows examples of product pairs that are accepted by the test at
α = 0.95. The example on the left shows a focal product that receives a large and
sudden shock in page visits, while direct visits to its recommended product remains

3Here we filter out any time periods where YD is exactly constant (because that will satisfy empir-
ical independence conditions trivially).
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(a) (b)

(c)

FIG. 7. Subplot (a) shows the number of valid split-door instances obtained as the p-value thresh-
old (α) is increased. Subplot (b) shows the expected fraction of erroneous instances (φ) returned by
the method for those values of α. The corresponding estimate for causal CTR is shown in Subplot (c);
error bars account for both bias due to φ and natural variance in the mean estimate.

relatively flat. This is reminiscent of the examples analyzed in Carmi, Oestreicher-
Singer and Sundararajan (2012) and Sharma, Hofman and Watts (2015). The ex-
ample on the right, however, shows more general patterns that are accepted under
the split-door criterion but not considered by these previous approaches: although
direct visits to both the focal and recommended products vary substantially, they
do so independently, and so are still useful in our estimate of the recommender’s ef-
fect. Conversely, two example product pairs that are rejected by the test are shown
in Figure 6(b). As is visually apparent, visit patterns for each of the focal and
recommended product pairs are highly correlated, and therefore not useful in our
analysis.

Changing the nominal p-value threshold used in the independence test allows us
to explore a tradeoff between coverage across products in our dataset and the pre-
cision of our causal estimate. As detailed in Appendix A, a lower threshold results
in more discovered instances, but with a higher likelihood of these instances being
invalid. For instance, Figures 7(a) and (b) show that decreasing the threshold to
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FIG. 8. Comparison of the causal CTR with the naive observational CTR for products that satisfy
the split-door criterion. Categories are ordered by the number of products found by the split-door
criterion in each category, with eBooks containing the most and Health and Beauty the least.

α = 0.80 results in over 20,000 split-door instances covering nearly 11,000 unique
focal products, but does so at the expense of increasing the expected fraction of
invalid instances to 0.21, indicating that approximately one in five of the returned
split-door instances may be invalid. The result, summarized in Figure 7(c), is that
the error bars on our estimate of ρ increase as we decrease α. These error bars,
calculated using equation (C.4) from Appendix C, account for both bias due to
erroneous split-door instances and the natural variance in the mean estimate due
to sampling.4 As α decreases, erroneous instances due to φ contribute to most of
the magnitude of the error bars shown in Figure 7(c). We observe that α = 0.95 of-
fers a good compromise: error bounds are within 1 percentage point and we obtain
more than 7000 split-door instances.

Furthermore, we can break these estimates down by the different product cate-
gories present on Amazon.com. Figure 8 shows the variation of ρ̂ across the most
popular categories, at a nominal significance level of α = 0.95. For the set of focal
products that satisfy the split-door criterion, we also compute the naive observa-
tional CTR. We see substantial variation in the naive estimate, ranging from 14%
on e-Books to 5% on Personal Computer. However, when we use the split-door
criterion to compute estimates, we find that the causal CTR for all product cat-
egories lies below 5%. These results indicate that naive observational estimates

4Note that the error bars are asymmetric; we expect erroneous split-door instances to drive the
causal estimate up from its true value, under the assumption that demand for the two products are
positively correlated with each other, as argued in Section 5.1.
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overstate the causal impact by anywhere from two- to five-fold across different
product categories.

There are two clear advantages to the split-door criterion compared to past ap-
proaches for estimating the causal impact of recommender systems. First, we are
able to study a larger fraction of products compared to instrumental variable ap-
proaches that depend on single-source variations [Carmi, Oestreicher-Singer and
Sundararajan (2012)] or restricting our attention to mining only shocks in observa-
tional data [Sharma, Hofman and Watts (2015)]. On the same dataset, the shock-
based method in Sharma, Hofman and Watts (2015) identified valid instances on
4000 unique focal products, while the split-door criterion finds instances for over
5000 unique focal products at α = 0.95, and over 11,000 at α = 0.80. Second, the
split-door criterion provides a principled method to select valid instances for anal-
ysis by tuning α, the desired significance level, while also allowing for an estimate
of the fraction of falsely accepted instances, φ.

5.5. Threats to validity. As with any observational analysis, our results rely on
certain assumptions that may be violated in practice. Furthermore, results obtained
on a subset of data may not be representative of the broader dataset of interest. Here
we conduct additional analyses to assess both the internal and external validity of
our estimate of the causal effect of Amazon’s recommendations.

5.5.1. Internal validity: Sensitivity to the connectedness assumption. As de-
scribed in Section 3.3, connectedness is the key identifying assumption for the
split-door criterion. Here we describe a test for sensitivity of the obtained estimate
(ρ̂) to violations of the connectedness assumption.

Referring to the causal model in Figure 3(a), violation of the connectedness
assumption implies that there exist components of unobserved demand VY that
affect both focal product visits X and recommendation click-throughs YR , but not
direct visits to the recommended product YD . For simplicity, let us assume that
VY is univariate normal and affects both X and YR linearly. We can write the
corresponding structural equations for the causal model in Figure 3(b) for each
split-door instance as

x = c1vy + ε1,(5.1)

yr = f (x) + c2vy + ε2,(5.2)

where f is an unknown function, and ε1 and ε2 are independent from all variables
mentioned above and are also mutually independent. Note that ε1 includes the
effect of UX and ε2 includes the effect of UY . For any split-door instance, the
estimator from Section 5.3 estimates the causal effect assuming that either c1 or c2
is zero.

To test the sensitivity of our estimate to the connectedness assumption, we take
our actual data and introduce an artificial confound VY by simulation, adding c1VY
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to X and c2VY to YR , respectively, for a range of different c1 and c2 values. We
simulate VY as a standard normal and vary c1 and c2 between [−1,1], and com-
pare these artificially confounded estimates to our actual estimate of ρ̂ = 2.6% for
α = 0.95. Figure 9(a) shows the deviation between estimates using the actual and
simulated data as c1 and c2 vary. The difference is maximized when both c1 and
c2 are high in magnitude and is negligible when either of c1 or c2 are zero. These
simulation results suggest a bilinear sensitivity to c1 and c2, a result we confirm
theoretically in the case of a linear causal model in Appendix B.

This analysis assumes that all split-door instances violate the connectedness as-
sumption. Recognizing that this need not be the case, and that only some instances
may be invalid, we introduce a third sensitivity parameter κ , which corresponds to
the fraction of split-door instances that violate connectedness. For instance, we can
test sensitivity of the estimate when at least half of the split-door instances satisfy
connectedness, as done by Kang et al. (2016) for inference under multiple possibly
invalid instrumental variables. As shown in Figure 9(b), when κ = 0.5 deviations
from the obtained split-door estimate are nearly halved, resulting in more robust
estimates.

5.5.2. External validity: Generalizability. Although the split-door criterion
yields valid estimates of the causal impact of recommendations for the time pe-
riods where product pairs are found to be statistically independent, it is important
to emphasize that products in the split-door sample may not be selected at random,
thus violating the as-if-random [Angrist, Imbens and Rubin (1996)] assumption
powering generalizability for natural experiments. As a result, care must be taken
to extrapolate these estimates to all products on Amazon.com.

Fortunately, as shown in Figure 10, the distribution of products and page visits
in our sample closely matches the inventory and activity on Amazon.com. Prod-
ucts with at least one valid split-door time period span many product categories and
cover nearly a quarter of all focal products in the dataset at α = 0.95. Figure 10(a)
shows that the distribution of products analyzed by the split-door criterion across
different product categories is almost identical to the overall set of products. Fig-
ure 10(b) shows a similar result for the number of page visits of these products
across different product categories, except for eBooks which are over-represented
in valid split-door instances. For comparison, we apply the same popularity filter
that we used for the split-door criterion—at least 10 page visits on at least one
day—to the dataset with all products.

Although these results do not necessarily imply that the as-if-random assump-
tion is satisfied (indeed it is very likely not satisfied) they do indicate that the split-
door criterion at least allows us to estimate causal effects over a diverse sample of
popular product categories, which is a clear improvement over past work [Carmi,
Oestreicher-Singer and Sundararajan (2012), Sharma, Hofman and Watts (2015)].



2722 A. SHARMA, J. M. HOFMAN AND D. J. WATTS

(a)

(b)

FIG. 9. Sensitivity analysis of the obtained click-through estimate. Panel (a) shows the scenario
where all split-door instances may be invalid. Panel (b) assumes that at most half of the instances are
invalid. The deviation of the true estimate from the obtained estimate increases as the magnitude of
the confounding from VY to X( c1) or Y (c2) increases; however, this deviation is lower in Panel (b).
In both figures, dotted line shows the obtained CTR estimate.
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(a) (b)

FIG. 10. The distribution of products and total visits over product categories. Among products
with at least 10 page visits on at least one day, the subset of focal products that satisfy the split-door
criterion are nearly identical to the set of all products. Fraction of page visits to those focal products
show more variation, but the overall distributions are similar.

6. Discussion. In this paper we have presented a method for computing the
causal effect of a variable X on another variable YR whenever we have an ad-
ditional variable YD which follows some testable conditions, and have shown its
application in estimating the causal impact of a recommender system. We now sug-
gest guidelines to ensure proper use of the criterion and discuss other applications
for which it might be used.

6.1. Guidelines for using the criterion. As with any nonexperimental method
for causal inference, the split-door criterion rests on various untestable assump-
tions and requires making certain modeling choices. We encourage researchers to
reason carefully about these assumptions, explore sensitivity to modeling choices,
and examine threats to the validity of their results.

6.1.1. Reason about assumptions. The split-door criterion relies on two
untestable assumptions: independence (of X and YD), and connectedness (i.e.,
nonzero causal effect of UY on YD). The independence assumption is a standard
assumption for observational causal inference. Barring coincidental equality of
parameters such that the effect of unobserved confounders on X and YD cancel
out, the independence assumption is likely to be satisfied. Nonetheless we encour-
age researchers to think carefully about this assumption in applying the criterion
in other domains. Depending on the application it may be possible to rule out
such cancellations. For example, in our recommendation system study we expect
demand for the focal and recommended product to be correlated. Therefore, the
causal effect of demand on both products is expected to be directionally identical,
and hence cancellation becomes impossible.
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The connectedness assumption is potentially more restrictive. In general, it is
plausible whenever measurements YR and YD are additive components of the same
tangible outcome Y that can be reached by similar means. That said, connectedness
remains an untestable assumption where, once again, domain knowledge should
be used to assess its plausibility. For instance, even when YR and YD are additive
components, in some isolated cases, UY may not be connected to YD at all. In a
recommender system this can happen when customers with pre-existing interest
in a product somehow visit it only through recommendation click-throughs from
other products. In such a scenario, the split-door criterion would be invalid. We
note, however, that this situation can arise only in the (unlikely) event that no such
user found the product directly. When there is even a small number of users that
visit the product directly, the split-door criterion will again be valid and, depending
on the precision of the statistical independence condition, can be applied.

6.1.2. Explore sensitivity to test parameters. A key advantage of the split-door
criterion is that once these two assumptions are met, it reduces the problem of
causal identification to that of implementing a test for statistical independence. At
the same time, this requires choosing a suitable statistical test and deciding on any
free parameters the test may have. For instance, in the case of the randomization
test used here, there is a significance level α used to determine when to accept or
reject focal and recommended product pairs as statistically independent. Any such
parameters should be varied to check the sensitivity of estimates to these choices,
as in Figures 7(b) and (c).

6.1.3. Examine threats to validity. After identifying and estimating the effect
of interest, one should examine both the internal and external validity of the result-
ing estimate. In terms of internal validity, we recommend conducting a sensitivity
analysis to assess how results change when the assumptions required for identifi-
cation are violated. In the case of the recommender system example, we simulated
violations of the connectedness assumption by artificially adding correlated noise
to X and YR (but not YD) and re-ran the split-door method to look at variation in
results, as shown in Figure 9.

Finally, after establishing internal validity, one needs to consider how useful the
resulting estimate is for practical applications. As remarked earlier and demon-
strated in our recommender system application, the split-door criterion is capable
of capturing the local average causal effect for a large sample of the dataset that
satisfies the required independence assumption (X ⊥⊥ YD). The argument has been
made that such local estimates are indeed useful in themselves [Imbens (2010)].
That said, the sample may not be representative of the entire population, and so
one must always be careful to qualify an extension of the split-door estimate to
the general population. Naturally, the more instances discovered by the method,
the more likely the estimate is to be of general use. Additionally, we recommend
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that researchers perform checks similar to those in Figure 10 to compare the dis-
tribution of any available covariates to check for differences between the general
population and instances that pass the split-door criterion.

6.2. Potential applications of the split-door criterion. The key requirement of
the split-door criterion is that the outcome variable must comprise two distinct
components: one that is potentially affected by the cause, and another that is not
directly affected by it. In addition, we should have sufficient reason to believe that
the two outcome components share common causes (i.e., the connectedness as-
sumption must be satisfied), and that one of outcome variables can be shown to be
independent of the cause variable (i.e., the independence assumption must be satis-
fied). These might seem like overly restrictive assumptions that limit applicability
of the criterion, but in this section we argue that there are in fact many interesting
cases where the split-door criterion can be employed.

As we have already noted, recommendation systems such as Amazon’s are es-
pecially well suited to these conditions, in large part because YD has a natural
interpretation of “direct traffic,” or any traffic that is not caused by a particular
recommendation. Likewise the criterion can be easily applied to other online sys-
tems that automatically log user visits, such as in estimating the causal effect of
advertisements on search engines or websites. Somewhat more broadly, time se-
ries data in general may be amenable to the split-door criterion, in part because
different components of the outcome occurring at the same time are more likely to
be correlated than components that share other characteristics, and in part because
time series naturally generate many observations on the input and output variables,
which permits convenient testing for independence.

For example, consider the problem of estimating the effect of social media
on news consumption. There has been recent interest [Flaxman, Goel and Rao
(2016)] in how social media websites such as Facebook impact the news that
people read, especially through algorithmic recommendations such as those for
“Trending news.” Given time series data for user activity on a social media web-
site and article visits from news website logs, we can use the split-door criterion
to estimate the effect of social media on news reading. Here YR would correspond
to the visits that are referred from social media, and YD would be all other di-
rect visits to the news article. Most websites record the source of each page visit,
so obtaining these two components for the outcome—visits to an article through
social media and through other means—should be straightforward. Whenever peo-
ple’s social media usage is not correlated with direct visits to a news article, we
can identify the causal effect of social media on news consumption. Similar anal-
ysis can be applied to problems such as estimating the effect of online popularity
of politicians on campaign financing or the effect of television advertisements on
purchases.

Finally, although we have focused on online settings for which highly granular
time series data is often collected by default, we note that there is nothing intrinsic
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to the split-door criterion that prevents it from being applied offline. For exam-
ple, many retailers routinely send direct mail advertisements to existing customers
whom they identify through loyalty programs. The split-door criterion could easily
be used to estimate the causal effect of these advertisements on product purchases:
X would be the number of customers that are sent an advertisement; YR would
be the customers among them who purchased the product; and YD would be the
number of customers who bought the product without receiving the mailer. More
generally, the split-door criterion could be used in any context where the outcome
of interest can be differentiated into more than one channel.

7. Conclusion. In closing we note that the split-door criterion is just one ex-
ample of a more general class of methods that adopt a data-driven approach to
causal discovery [Cattaneo, Frandsen and Titiunik (2015), Grosse-Wentrup et al.
(2016), Jensen et al. (2008), Sharma, Hofman and Watts (2015)]. As we have
discussed, data-driven methods have important advantages over traditional meth-
ods for exploiting natural variation—allowing inference to be performed on much
larger and more representative samples—while also being less susceptible to un-
observed confounders than back-door identification strategies. As the volume and
variety of fine-grained data continues to grow, we expect these methods to increase
in popularity and to raise numerous questions regarding their theoretical founda-
tions and practical applicability.

APPENDIX A: ESTIMATING THE FRACTION OF ERRONEOUS
SPLIT-DOOR INSTANCES

Let the expected fraction of erroneous X–YD pairs—split-door instances—
returned by the method be φ. In the terminology of multiple testing, φ refers to
the False Nondiscovery Rate (FNDR) [Delongchamp et al. (2004)]. This is dif-
ferent from the more commonly used False Discovery Rate (FDR) [Farcomeni
(2008)], since we deviate from standard hypothesis testing by looking for split-
door instances that have a p-value higher than a predetermined threshold. Given
m hypothesis tests and a significance level of α, we show that the false nondiscov-
ery rate φ for the split-door criterion can be characterized as

(A.1) φα ≤ (1 − α)πdepm

Wα

,

where πdep is the fraction of actually dependent X–YD instances in the dataset and
Wα is the observed number of X–YD instances returned by the method at level α.

The above estimate can be derived using the framework proposed by Storey
(2002) under two assumptions. The first is that the distribution of p-values under
the null hypothesis is uniform, and the second is that the distribution of p-values
under the alternative hypothesis is stochastic smaller than the uniform distribution.
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Let the number of invalid instances found using the split-door criterion be T . Then,
by definition, the false nondiscovery rate can be written as

φα = E
[

T

W

∣∣∣W > 0
]
.

Since the alternative distribution is stochastically smaller than uniform, we can
arrive at an upper bound by replacing T by the expected number of split-door
instances if the alternative distribution were uniform, (1 − α) ∗ mdependent = (1 −
α) ∗ πdep ∗ m, giving

(A.2) φα ≤ (1 − α) ∗ πdepm

Wα

.

Here πdep is unknown, so it needs to be estimated. A common approach is to es-
timate the fraction of actually independent instances or null hypotheses πindep and
then use πdep = 1 − πindep [Delongchamp et al. (2004)]. For robustness, we sug-
gest using multiple procedures to estimate πindep and verify sensitivity of results
to the choice of πindep. In this paper, we use two different estimates, derived from
Storey and Tibshirani (2003), Storey (2002) (Storey’s estimate); and Nettleton et al.
(2006), Liang and Nettleton (2012) (Nettleton’s estimate).

Storey’s estimate is defined as

(A.3) π̂indep = Wλ

m(1 − λ)
,

where λ ∈ [0,1) is a tunable parameter—similar in interpretation to α—and Wλ

is the number of hypothesis tests having a p-value higher than λ. The choice of λ

involves a bias-variance tradeoff, with λ = 0.5 being a common choice, as in the
SAM software developed by Storey and Tibshirani (2003).

Nettleton’s estimate, on the other hand, chooses the effective value of λ adap-
tively, based on the observed p-value distribution. First, the p-value distribution
is summarized in a histogram containing B bins. Then, a threshold λ is chosen as
the index (I ) corresponding to the left-most bin whose count fails to exceed the
average count of the bins to its right. This results in the following estimate, where
λ = (I − 1)/B:

(A.4) π̂indep = Wλ

m(1 − λ)
= Wλ

m(1 − I−1
B

)
.

Applying each of these to the m = 114,469 focal and recommended product
pairs analyzed in Section 5 allows us to estimate the true number of dependent X–
YD pairs in the dataset, πdep. At α = 0.95, both methods give very similar results
(πdep,Storey = 0.184, πdep,Nettleton = 0.187); we use πdep = 0.187 in our analysis.
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APPENDIX B: SENSITIVITY ANALYSIS FOR THE CONNECTEDNESS
ASSUMPTION

In this section we analyze the sensitivity of an estimate obtained using the
split-door criterion to violations of the connectedness assumption. As Figure 3(a)
shows, violation implies that there exist variables VY that affect only X and YR

but not YD . We use the structural equation model from Section 2.2 to illustrate
sensitivity analysis.

Given that the unobserved confounders can be broken down into two compo-
nents UY and VY , we can rewrite the linear structural equations from equation (2.8)
as

x = ηux + γ1uy + c1vy + εx,(B.1)

yr = ρx + γ2uy + c2vy + εyr ,(B.2)

yd = γ3uy + εyd,(B.3)

with two additional parameters c1 and c2 denoting the effect of the unobserved
variable VY on X and YR , respectively. Applying the split-door criterion X ⊥⊥ YD ,
we write the following equations for each obtained split-door instance:

x = ηux + c1vy + ε′
x,(B.4)

yr = ρx + c2vy + ε′
yr .(B.5)

Here VY is unobserved and hence the causal effect is not identified. Using (B.5) as
an estimating equation will lead to a biased estimate of the causal effect due to the
confounding effect of the unobserved common cause VY . Note that this structure is
identical to the omitted variable bias problem in back-door and conditioning-based
methods [Harding (2009)]. Consequently, we obtain a similar bilinear dependence
of the split-door estimate to sensitivity parameters c1 and c2.

Specifically, the split-door method regresses YR on X to obtain an estimate ρ̂ for
each obtained instance. When connectedness is violated, the bias of this estimate
can be characterized as

ρ̂ = (
XT X

)−1
XT YR =

∑
i xiyri∑
j x2

j

=
∑

i xi(ρxi + c2vyi
+ ε′

yri
)∑

j x2
j

= ρ + c2

∑
i vyi

xi∑
j x2

j

+
∑

i ε
′
yri

xi∑
j x2

j

,

where we use (B.5) to expand yri . As in Section 3, let τ denote the sample size for
each split-door instance. When X and VY are both standardized to have zero mean
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and unit variance, and taking expectation on both sides, we obtain

E[ρ̂] = ρ + c2 E
[

1

τ

∑
i

vyi
xi

]
+ E

[
1

τ

∑
i

ε′
yri

xi

]

= ρ + c2 E
[

1

τ

∑
i

vyi

(
ηuxi

+ c1vyi
+ ε′

xi

)]

(B.6)

= ρ + c1c2 E
[

1

τ

∑
i

vyi
vyi

]
+ η E

[
1

τ

∑
i

vyi
uxi

]
+ E

[
1

τ

∑
i

vyi
ε′
xi

]
,

E[ρ̂] = ρ + c1c2,

where we use the independence of error terms and that UX ⊥⊥ VY .
In addition, note that the split-door method averages the estimate ρ̂ obtained

from each instance. Not all instances may violate the connectedness assumption,
therefore we introduce an additional sensitivity parameter κ that denotes the frac-
tion of invalid split-door instances. Bias in the final split-door estimate is then
given by the following equation in the three sensitivity parameters:

(B.7) E[ρ̂] = ρ + κc1c2.

For expositional clarity, the above analysis assumed a linear structural model
and demonstrated similarities with sensitivity of conditioning-based methods to
unobserved common causes. However, in practice, the structural model may not
be linear. In the recommendation example discussed in Section 5, we do not as-
sume a linear model and instead use an aggregate ratio estimator. As shown in
Figure 9, simulations show that sensitivity of this estimator follows a similar bilin-
ear dependence on c1 and c2.

APPENDIX C: CHARACTERIZING ERROR IN THE SPLIT-DOOR
ESTIMATE FOR A RECOMMENDATION SYSTEM

In Section 5.3, the split-door causal estimate is defined as the mean of CTR esti-
mates over all time periods and focal products with valid split-door instances. Here
we characterize the error in this estimate. The key idea is that the error comes from
two components: the first due to some erroneously identified split-door instances,
and the second due to natural variance in estimating the mean. For a significance
level α of the independence test, let W be the number of obtained split-door in-
stances and N be the number of aggregated CTR estimates ρ̂iτ computed from
these instances. Then the mean estimate can be written as

(C.1) ρ̂ =
∑

iτ ρ̂iτ

N
,

where i refers to a focal product and τ refers to a split-door time period. As in
Appendix A, let φ denote the expected fraction of erroneous split-door instances
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obtained. That is, for an expected number of φW instances, the method may have
erroneously concluded that the focal and recommended products are independent.
Correspondingly, an expected φW = φ′N number of ρ̂iτ estimates will be invalid.5

These invalid estimates can be expanded as

(C.2) ρ̂iτ = ρcausal
iτ + ηiτ ,

where η refers to the click-through rate due to correlated demand between the focal
and recommended products. Thus, the overall mean estimate can be written as

ρ̂ =
∑

iτ∈A ρcausal
iτ + ∑

iτ∈B(ρcausal
iτ + ηiτ )

N

=
∑

iτ ρcausal
iτ

N
+

∑
iτ∈B ηiτ

N
,

where A and B refer to (i, τ ) pairs with valid and erroneous split-door estimates
respectively [|A| = (1 − φ′)N, |B| = φ′N ].

Comparing this to the true ρcausal, we obtain

(C.3) ρcausal − ρ̂ = (
ρcausal − ρ̄causal) −

∑
iτ∈B ηiτ

N
.

The first term of the RHS corresponds to error due to sampling variance, and the
second term corresponds to error due to correlated demand (φ). We estimate these
terms below.

Error due to φ. Based on the argument for justifying the independence assump-
tion in Section 5.1, let us assume that the total effect of UY on YR is positive
(without stipulating it for each individual instance). This means that the term due
to correlated demand is positive,

∑
iτ∈B ηiτ ≥ 0. Further, the maximum value of

ηiτ is attained when all the observed click-throughs are due to correlated demand
(ηiτ = ρ̂iτ ). Under this assumption,

0 ≤
∑

iτ∈B ηiτ

N
≤ ρmaxsum

N
,

where ρmaxsum corresponds to the maximum sum of any subset of φ′N ρ̂iτ values.
An approximate estimate can be derived using ρ̂—the empirical mean over all N

values of ρiτ —leading to ρmaxsum ≈ φ′Nρ̂.
Error due to natural variance. We characterize this error by the 99% confidence

interval for the mean estimate, given by 2.58 ∗ σ̂√
N

, where σ̂ is the empirical stan-
dard deviation.

5In general, the expected number of invalid ρ̂iτ estimates may be less than or equal to φW , since a
focal product may have more than one recommended product that corresponds to an invalid split-door
instance.
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Combining these two, the resultant interval for the split-door estimate is

(C.4)
(
ρ̂ − ρmaxsum

N
− 2.58

σ̂√
N

, ρ̂ + 2.58
σ̂√
N

)
.

The above interval demonstrates the bias-variance tradeoff in choosing a nom-
inal significance level for the independence test and the corresponding φ. At high
nominal significance level α, bias due to φ is expected to be low but variance of the
estimate may be high due to low N . Conversely, at low values of α, variance will
be lower but φ is expected to be higher because we accept many more split-door
instances.
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SUPPLEMENTARY MATERIAL

Code for split-door criterion (DOI: 10.1214/18-AOAS1179SUPP; .zip). We
provide an R package that implements the split-door criterion, along with code
samples for applying the criterion to new applications.
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