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SUMMARY

The immunological synapse (IS) is a junction
between the T cell and antigen-presenting cell
and is composed of supramolecular activation
clusters (SMACs). No studies have been pub-
lished on naive T cell IS dynamics. Here, we
find that IS formation during antigen recognition
comprises cycles of stable IS formation and
autonomous naive T cell migration. The migra-
tion phase is driven by PKCq, which is localized
to the F-actin-dependent peripheral (p)SMAC.
PKCq�/� T cells formed hyperstable IS in vitro
and in vivo and, like WT cells, displayed fast os-
cillations in the distal SMAC, but they showed
reduced slow oscillations in pSMAC integrity.
IS reformation is driven by the Wiscott Aldrich
Syndrome protein (WASp). WASp�/� T cells
displayed normal IS formation but were unable
to reform IS after migration unless PKCq was
inhibited. Thus, opposing effects of PKCq and
WASp control IS stability through pSMAC sym-
metry breaking and reformation.

INTRODUCTION

T cells require an intactactin cytoskeleton to initiateT cell re-

ceptor (TCR) clustering and signaling (Valitutti et al., 1995;

Varma et al., 2006). F-actin may regulate the diffusion,

followed by the trapping process, that brings signaling

molecules to TCR clusters (Douglass and Vale, 2005). Sig-

naling downstream of the TCR triggers production of dy-

namic F-actin, thus creating a potential positive-feedback
loop (Bubeck Wardenburg et al., 1998). Antigen recognition

also requires adhesion molecules, and many are F-actin

dependent (Kucik et al., 1996). Finally, T cells contact

antigen-presenting cells through a process of stochastic

repertoire scanning, an active search that uses F-actin-

dependent amoeboid locomotion (Miller et al., 2003).

T cells’ rapid locomotion that characterizes the search

for antigen gives way to a period of stable T cell interaction

once antigen recognition takes place (Mempel et al., 2004;

Okada et al., 2005). This stable phase is consistent with im-

munological synapses (ISs) that have been studied

extensively in vitro with antigen-experienced T cells or

clones and antigen presentation by B cells or supported

planar bilayers containing MHC-peptide complexes and

adhesion ligands (Grakoui et al., 1999; Monks et al.,

1998). The IS is a radially symmetrical structure with three

major compartments referred to as SMACs (Monks et al.,

1998). The central SMAC (cSMAC) was initially described

as a signaling structure (Freiberg et al., 2002; Monks

et al., 1998), but this zone may primarily carry out endocytic

and exocytic processes linked to TCR degradation and di-

rected secretion (Stinchcombe et al., 2006; Varma et al.,

2006). Laterally outward from the center is the peripheral

SMAC (pSMAC), a ring of LFA-1/ICAM-1 interactions colo-

calized with the cytoskeletal integrin linker talin (Monks

et al., 1998). Continuing outward to the edge of the IS is

the distal SMAC (dSMAC), a zone enriched in the tyrosine

phosphatase CD45 (Freiberg et al., 2002). Structures that

sustain TCR signaling have recently been identified: TCR

microclusters form in the dSMAC and continually translo-

cate through the pSMAC to the cSMAC (Varma et al., 2006).

Adaptive immune recognition evolved in early verte-

brates, whereas mechanisms of F-actin and myosin-based

amoeboid mobility evolved in motile single-cell organisms

such as dictyostelium. Evolution of specialized recognition
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mechanisms such as the IS may utilize common machinery

of mobile cells. The basic engine for amoeboid locomotion

is protrusion that is driven by F-actin polymerization and

linked to F-actin and myosin-II-based contraction (Lin

et al., 1996). Linkage of adhesion molecules to the F-actin

network during polarized protrusion and the maintenance

of these linkages during contraction lead to forward motion

at up to 30 mm/min, and further contraction at the back of

the cell leads to release of substrate interactions (Pollard

and Borisy, 2003). The leading edge is a sensory structure

defined as a lamellipodium that uses actin-based protru-

sion and myosin-II-based contraction to test the substrate

(Giannone et al., 2004). The lamellipodium oscillates at >1

cycle per minute, and this oscillation can take the form of

circular waves during cell spreading. Diverse cell types in-

cluding insect cells, human fibroblasts, and mouse lym-

phocytes display this dynamic character (Dobereiner

et al., 2006). Traction forces for movement are generated

in the more stable lamella (Gupton et al., 2005), which

has also been referred to as an asymmetric focal zone

(Smith et al., 2005). Talin is a marker of the lamella, the focal

zone and the pSMAC, suggesting a possible relationship

between these structures (Gupton et al., 2005; Monks

et al., 1998; Smith et al., 2005). The radial symmetry of

the IS and particularly the pSMAC may account for posi-

tional stability, and reinstating T cell migration would

require symmetry breaking (Verkhovsky et al., 1999).

Protein kinase C-q (PKCq), a member of the ‘‘novel’’

PKC subfamily, is the only PKC isoform that redistributes

to the IS (Monks et al., 1997). PKCq is localized in the

cSMAC or pSMAC (Monks et al., 1998; Sanchez-Lockhart

et al., 2004; Somersalo et al., 2004). PKCq is required for

NFkB, NF-AT, and AP-1 activation, IL2 production, and

Th2 differentiation (Berg-Brown et al., 2004; Marsland

et al., 2004; Sun et al., 2000). PKCq may also be involved

in pathways connecting TCR to the actin cytoskeleton

(Thome, 2003; Villalba et al., 2002), perhaps via events

mediated through WASp interacting protein (WIP) (Krzew-

ski et al., 2006; Sasahara et al., 2002). The role of PKCq in

the regulation of IS dynamics is not known.

WASp is a regulator of the Arp2/3 complex that plays

a critical role in formation of specialized adhesive junc-

tions in the myeloid lineage (Calle et al., 2004) and antag-

onizes the PKCq-dependent formation of WIP-myosin II

complexes (Krzewski et al., 2006). T cells from WASp-

deficient mice have defects in IL2 production (Snapper

et al., 1998). Human CD4+ T cells from WAS patients

had defects in the production of Th1 but not Th2 cytokines

(Trifari et al., 2006). WIP binds to and stabilizes WASp in

the resting state, and the complex is separated upon cell

activation (Sasahara et al., 2002). The impact of WASp

deficiency on IS formation is not clear: One study found

defects in WASp-deficient T cells (Badour et al., 2003),

whereas another group found normal IS formation (Can-

non and Burkhardt, 2004).

Here, we examine the genetic control of IS stability. We

find that neither PKCq nor WASp is required for formation

of the IS. PKCq is required for the periodic symmetry
774 Cell 129, 773–785, May 18, 2007 ª2007 Elsevier Inc.
breaking in the contact leading to short bursts of mobility

during early phases of antigen recognition. WASp, on the

other hand, is needed to re-establish symmetry. Thus,

PKCq and WASp play opposing roles in balancing

symmetry breaking and generation to regulate dynamics

of early T cell priming.

RESULTS

PKC-q Is Localized in the pSMAC

on Supported Planar Bilayers

We wanted to determine whether the SMACs as defined

for activated T cells interacting with B cells (Freiberg

et al., 2002) can be directly related to zones formed by

naive T cells interacting with supported planar bilayers

containing ICAM-1, CD80, and agonist MHC-peptide

complexes (Bromley et al., 2001). We fixed AND TCR Tg

T cells after 45 min of interaction with the bilayer, per-

formed fluorescence staining for CD45 (dSMAC), talin

(pSMAC), and TCR (cSMAC) (Figure 1A), and used total in-

ternal reflection fluorescence microscopy (TIRFM) to focus

on cellular signals within 200 nm of the planar bilayer

(Varma et al., 2006). Phalloidin staining detected F-actin.

CD45 was most brightly stained in an approximately

1- to 2-mm-thick ring that was also stained brightly with

phalloidin (Figure 1B), consistent with a dSMAC. Talin

stained an intermediate ring of �2 mm thickness, and this

ring had relatively less CD45 and phalloidin staining

(Figure 1B), consistent with a pSMAC. The TCR stained

most strongly in a bright central cluster (Figure 1B), consis-

tent with a cSMAC. Peripheral TCR microclusters are

faintly visible in the images (yellow arrow). ICAM-1 accu-

mulation in the bilayer was strongest in the pSMAC zone

(Figure 1B), consistent with earlier studies. The dSMAC

as marked by CD45 can also be located in images of

ICAM-1 accumulation as an area that is outside the

pSMAC and that often shows exclusion of ICAM-1 (white

arrow). Thus, we used ICAM-1 accumulation as a marker

of the pSMAC. We examined the location of PKCq in fixed

IS by using a polyclonal affinity-purified antibody. PKCq

accumulated in the pSMAC zone in 60% of contacts and

at the junction between the dSMAC and pSMAC zones in

35% of IS by TIRFM (Figure 1C). PKCq staining was local-

ized in small punctae (arrows) in the ICAM-1 region but did

not precisely overlay the ICAM-1 accumulations. IS formed

here with CD80 incorporated in the bilayer differed from

earlier results with B cells or fibroblasts expressing

CD80, where PKCq staining was found to be a marker of

the cSMAC (Monks et al., 1998; Sanchez-Lockhart et al.,

2004). We did not detect a signal in PKCq-deficient T cells

by using the PKCq antisera (Figure S1 in the Supplemental

Data available with this article online). We tested the de-

pendence of the pSMAC on F-actin by treating IS with 1

mM latrunculin A, an inhibitor of actin polymerization.

ICAM-1 accumulation decreased in intensity and became

more dispersed in the interface within 2 min of latrunculin A

treatment, whereas the central accumulation of TCR re-

mained intact (Figure 1D). Washing latrunculin A from the



Figure 1. Primary T Cell Cytoskeletal Regions and Actin Dependence

(A) Schematic of markers of SMAC regions of the T cell IS. MVB stands for multi-vesicular bodies.

(B–D) Naive AND T cells were adhered to bilayers containing ICAM-1, CD80, and MHC-peptide complexes. The interface of T cells contacting the

bilayer was imaged by TIRFM. Scale bars represent 4 mm (B) shows representative staining of markers of SMAC regions of the naive T cell IS. Cells

were fixed at 45 min, permeabilized, and stained for F-actin and regional markers. TCR images are from a live cell at 40 min. (C) shows PKCq staining.

Naive AND T cells were adhered to bilayers, fixed at 50 min, permeabilized, stained for PKCq and TCR, and imaged by TIRFM. (D) shows naive AND

T cells that were stained with monovalent Fabs to TCR, adhered for 20 min to bilayers, and imaged by wide-field microscopy. Cells were treated with

1 mM latrunculin A for 10 min., imaged, washed, and then reimaged. Left panels show representative images. The graph on the right side shows quan-

tification of ICAM-1 molecules in the contact (Grakoui et al., 1999); averages and SD are shown. *t test, p < 0.0001. All images are representative of at

least three experiments.
cells restored strong ICAM-1 accumulation in the pSMAC

after 5 min (Figure 1D). Treatment with the microtubule dis-

ruptor colchicine had no effect on the intensity of ICAM-1

accumulation in the pSMAC over 30 min, although it did

destroy the microtubule network (data not shown). Thus,

PKCq is accumulated in the F-actin-dependent pSMAC

in naive T cells interacting with supported planar bilayers
presenting agonist MHC-peptide complexes, adhesion,

and costimulation signals.

PKCq Is Not Required to Form the IS

We next determined whether PKCq is required for IS

formation. Naive T cells from AND TCR Tg PKCq�/�,

PKCq+/�, or PKCq+/+ formed nearly identical IS on planar
Cell 129, 773–785, May 18, 2007 ª2007 Elsevier Inc. 775



Figure 2. PKCq Destabilizes the IS and Promotes Smaller cSMAC Size

(A and B) PKCq�/� T cells form IS on bilayers containing agonist MHC-peptide complexes, CD80, and ICAM-1. (A) shows naive CD4+ T cells that were

purified from littermate AND PKCq�/� or PKCq+/+ mice. Images were acquired at 20 min. The experiment was repeated at least eight times, as well as

performed with 5CC7 and 2B4 TCR transgenic PKCq�/� and PKCq+/� T cells, and showed similar results. (B) shows that I-Ek (cSMAC) and ICAM-1

(pSMAC) density accumulated in the IS to 40 min was quantified (20 PKCq+/+ and 37 PKCq�/� cells measured). Data are representative of two inde-

pendent experiments. Averages and SD are shown. *t test, p < 0.0001. The scale bar represents 4 mm.

(C) PKCq destablizes IS in vitro. The percentage of stable IS was plotted for each genotype over time. Differences between PKCq�/� and PKCq+/� are

statistically significant by c2, p < 0.001. The representative time course of at least six similar experiments is shown.

(D) Representative AND T cell travel during 90 min time course. The center of the IS was marked (0 min), and lines show cells’ paths over 90 min.

ICAM-1 planar bilayer images are shown. The scale bar represents 4 mm.

(E) Destabilized IS promote IL-2 secretion. Representative AND T cell IL-2 secretion plots at 6 hr for stable (S) and destabilized (D) IS. More than 200

cells were analyzed in each category. The error bar represents averages. *Mann-Whitney U, p = 0.002.
776 Cell 129, 773–785, May 18, 2007 ª2007 Elsevier Inc.



Table 1. Comparison of Dynamic IS Interactions

IS

(%)

Stable

IS (%)

IS Duration

(min)

Move

(%)

Move and

Reform IS (%)

Movement

Duration (min)

Average

Speed (mm/min)

Average

Polarity (mm)

Wild-type 67 22 17 ± 31 78 90 35 ± 20 0.36 1.33

PKCq�/� 40 85a 83 ± 29b 15 9a 5 ± 3c 0.002b 0.66b

WASp�/� 80 3 12 ± 5 97 17 ND 0.89b 2.72b

Quantification of time-lapse fluorescence imaging of naive WT, PKCq�/�, and WASp�/� AND TCR Tg T cells interacting with bila-

yers containing ICAM-1-Cy5, I-Ek, and CD80 over 95 min (to 45 min for WASp�/�). ND stands for ‘‘not determined,’’ and durations

represent averages ± SD.
a Chi square compared to WT, p < 0.01.
b Results from t test compared to WT, p < 0.0001.
c Results from t test compared to WT, p = 0.006.
bilayers (Figure 2A and Figure S2A). PKCq�/� T cells accu-

mulated greater amounts of MHCp complexes in the

cSMAC than PKCq+/+ cells (Figure 2B) but had similar

levels of ICAM-1 accumulated in the pSMAC at 30 min

(Figure 2B). When PKCq-YFP was introduced into naive

PKCq�/� T cells by electroporation, the YFP signal was

concentrated in the pSMAC region, thus confirming the

localization reported by the PKCq-specific antibody

(Figure S2B). Thus, PKCq is not required for IS formation.

The significance of a larger cSMAC was not immediately

clear, so the dynamics of IS formed by naive PKCq+/+

and PKCq�/� T cells was studied further.

PKCq Is Required for pSMAC Symmetry Breaking

To evaluate IS dynamics, we first performed an IS-survival

analysis by starting with T cells that formed IS on bilayers

by 30 min and following their location over the next

180 min with the rule that the IS survived if the cell moved

less than 10 mm (i.e., one cell diameter) from its original

location. To our surprise, only 30% of naive PKCq-

expressing T cells’ ISs survived for 180 min, with a half-

life of 90 min. In contrast, 88% of PKCq�/� T cell IS sur-

vived for 180 min with an extrapolated half-life of �10 hr

(Figure 2C). Time-lapse analysis of ICAM-1-accumulation

images revealed that PKCq-expressing cells periodically

broke open the pSMAC to create an asymmetric focal-

zone accumulation pattern and relocated to nearby areas,

where the pSMAC reformed (Table 1 and Figure 2D; see

also Movies S1 and S2 and Figure S2C). The relocation

process, which has a periodicity of �20–40 min, is auton-

omous because the cells are interacting with a homoge-

neous substrate free of gradients in MHCp, CD80, or

ICAM-1, without chemotactic gradient imposed. Remark-

ably, PKCq�/� T cells did not relocate and displayed less

marked symmetry breaking of the pSMAC over several

hours (Table 1 (polarity) and Figure 2D; see also Movies

S3 and S4). We did not observe differences between

PKCq+/+ and PKCq+/� T cells in IS formation or symmetry

breaking (data not shown). Because naive T cells do not

spread on ICAM-1 alone, we were unable to test the role

of PKCq in antigen-independent migration in vitro. Expres-

sion of PKCq-YFP in PKCq�/� naive T cells resulted in

increased observation of pSMAC breaking: 10 of 11 YFP-
positive cells in two experiments had lost pSMAC sym-

metry within 40 min, a similar time course as WT cells.

Because PKCq expressing T cells contained a minority

of cells that formed continuously symmetrical pSMAC

over the 6 hr period required to assess IL2 production,

we compared IL2 release from stable versus relocated

IS. Interestingly, T cells that relocated their ISs at least

once during this period made significantly more IL2 than

cells that remained within one cell diameter of their earlier

location (Figure 2E, p = 0.002). Together, these data indi-

cate that naive T cells periodically break and reform the

pSMAC in a PKCq-dependent manner and relocate via

a transient LFA-1/ICAM-1 focal zone. This cycle of IS

formation, migration, and IS relocation is correlated with

greater IL2 production.

PKCq Promotes T Cell Motility during Antigen

Recognition In Vivo

We next tested for physiological changes in T-DC (den-

dritic cell) interaction stability with and without PKCq

in vivo by using confocal intravital microscopy. In vivo, T

cells search for antigen by migrating actively within DC

networks (Lindquist et al., 2004) and slow their migration

for a period of hours after encounters with antigen-

expressing DC (Mempel et al., 2004). We imaged T cell

dynamics in the DC-rich spleen (Kraal et al., 1986), an

important location for T cell responses, by intravital confo-

cal microscopy (Sevilla et al., 2003). The advantage of the

splenic red pulp is that T cells migrate over sessile DC net-

works 30 mm under the capsule (Figure S3A). We labeled

PKCq+/+ and PKCq�/� DO11.10 TCR transgenic T cells

with different fluorescent dyes and transferred them into

background-matched WT recipients (Figure S3B). Base-

line migration (without exogenous antigen) of PKCq+/+

and PKCq�/� DO11.10 T cells was similar (Mann-Whitney

U, p = 0.49) (Movie S5). We synchronously activated all

DO11.10 T cells in the spleen by i.v. ovalbumin-peptide in-

jection (Zell et al., 2001) and determined both T cell speed

and displacement. Although this would be a tolerogenic

stimulus, we previously found that the stability of T-DC

interactions is similar for CD4+ T cells under conditions

of tolerance induction and immunization (Shakhar et al.,

2005). We scored arrest as T cell movement of <20 mm
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from the initial position during an imaging period of 60 min.

In response to antigen in the spleen, we observed three

phases of T cell movement: early transient interactions, in-

termediate arrest, and a late phase of high mobility similar

to phases observed in the lymph node (Mempel et al.,

2004). Ovalbumin peptide had little effect on migration of

PKCq+/+ or PKCq�/� DO11.10 T cells in the first 2 hr (data

not shown). Antigen-induced arrest of both PKCq+/+ and

PKCq�/� DO11.10 T cells was maximal at 3–8 hr, but

significantly fewer PKCq+/+ T cells arrested compared

PKCq�/� T cells (Figure 3A and Movie S6). Detailed analy-

sis of migration speed showed that the distribution is

shifted to faster speeds for the PKCq+/+ DO11.10 T cells

compared to PKCq�/� DO11.10 T cells (Figure 3B). Both

PKCq+/+ and PKCq�/�DO11.10 T cells resumed migration

by 16 hr after ovalbumin-peptide injection (Figure 3A).

Non-TCR transgenic PKCq+/+ T cells stopped and did not

change stopping, migration speed, or displacement be-

tween 3 and 16 hr (Figure 3A; see also Figure S4 and

Movies S7 and S8). We conclude that PKCq induces relo-

cation of T cell IS in vitro and decreases arrest in vivo but

that PKCq is dispensable for surveillance of DC networks

as well as late dynamic phases of the T cell-DC interaction.

Symmetry-Breaking Defect Originates

in the pSMAC

To understand how PKCq controls the movement of the T

cells during antigen recognition, we compared the zones of

the IS to actin cytoskeletal zones common to many types

of motile cells. The lamellipodium undergoes contractile

oscillations—radial waves that are composed of F-actin-

mediated extension and myosin-II-mediated contraction

and that move around the perimeter of the contact

area—and is thought to be important in mechanical and

chemical sensing (Dobereiner et al., 2006; Giannone

et al., 2004). Staining of fixed IS showed localization of

Arp2/3 and cofilin to the dSMAC and tropomyosin in the

pSMAC (Figures S5A and S5B), suggesting that these

compartments are similar to the lamellipodium and la-

mella, respectively, of migrating tissue cells (Gupton et al.,

2005; Ponti et al., 2004). We asked whether PKCq alters

contractile oscillations in the dSMAC (Dobereiner et al.,

2006). Naive PKCq+/� and PKCq�/� T cells were fluores-

cently labeled with the cytoplasmic dye calcein and visual-

ized during contact with planar bilayers. Similar results

were obtained with Fab to the dSMAC marker CD45

(data not shown). Time-lapse data on mature IS were then

analyzed with an algorithm that tracks the outer edge of the

cell contact and measures its instantaneous velocity rela-

tive to the cell centroid as a function of position along the

roughly circular contact perimeter and time (Figures 4A–

4D and Figures S6A–S6D). The velocity maps showed the

characteristic ‘‘zebra-stripe’’ pattern of contractile oscilla-

tions, with the slight tilt reflecting the speed of the lateral

waves (Dobereiner et al., 2006; Giannone et al., 2004) (Fig-

ures 4A and 4B). PKCq+/� and PKCq�/� T cells displayed

identical periods of contractile oscillations with an average

periodicity of 42 s as determined by power-spectrum anal-
778 Cell 129, 773–785, May 18, 2007 ª2007 Elsevier Inc.
ysis (PKCq+/� versus PKCq�/�, 95% confidence, p = 0.77,

F < Fcrit). There was also no difference in the magnitudes of

extension and retraction of the cell edge between PKCq+/�

and PKCq�/� T cells. Interestingly, even when PKCq+/� T

cell were relocating, the contractile oscillations continued

to circumnavigate the dSMAC in the migrating cell. Thus,

relocating synapses retain a radial lamellipodium-like

structure, the dSMAC, and PKCq does not alter the conti-

nuity or symmetry of this extension-retraction process.

Figure 3. PKCq Destabilizes the IS In Vivo

(A) Quantification of T cell stopping and breaking the IS in response to

peptide in the spleen. DO11.10 PKCq�/� (>), DO11.10 PKCq+/+ (C),

and B10D2 PKCq+/+ (,) T cells were vitally labeled with combinations

of CFSE or CMRA and adoptively transferred to PKCq+/+ nontrans-

genic hosts (B10D2). Intravital microscopy of the spleen was

performed in various time ranges after peptide injection. Each point

represents the percentage of stopped cells in movies with more than

20 cells of each type in the field over 20 min. Black bars represent

averages of stopped cells. Shown are p values from Fisher’s exact

test between PKCq+/+ DO11.10 and PKCq�/� DO11.10 T cells at the

same time point.

(B) Speed frequency distribution for one representative field. All cell

velocities were measured in the same field to eliminate the effect of

spleen movement because of breathing and blood flow. T cell migra-

tion speeds were calculated on the same movies where PKCq�/�

and +/+ DO11.10 T cells were transferred into the same host. Speed

differences are significant (Mann-Whitney U, p < 0.001) and represen-

tative of other experiments. Arrows represent the average PKCq+/+

DO11.10 T cell speed (top graph, 3.93 mm/min) and PKCq�/�

DO11.10 T cell speed (bottom graph, 2.28 mm/min).



Figure 4. PKCq and Fast Oscillations in the dSMAC

AND T cells labeled with a cytoplasmic dye were adhered to bilayers containing ICAM-1, CD80, and MHC-peptide complexes and were imaged by

TIRFM between 20 and 40 min. Representative maps of membrane velocity as a function of circumference position (equalled to arc length) and time (A

and B) are shown, and TIRFM (C and D) images are shown for PKCq+/� (A and C) or PKCq�/� (B and D) naive CD4+ T cells. The ‘‘normalized circum-

ference position’’ measures relative distance along the roughly circular perimeter counterclockwise from an arbitrary origin. Extensions of greater than

+0.5 mm/min were coded as red/yellow and retractions of greater than�0.5 mm/min were coded as blue. Velocities below a threshold of ±0.5 mm/min

were coded as white. Examples of membrane-extension-velocity banding are shown between open red arrowheads (A and B); membrane-extension-

velocity banding resulting from cellular movement is between black open arrowheads; and membrane-retraction-velocity banding resulting from cel-

lular movement is between black filled arrowheads (A). Representations of circumference position are overlaid on the TIRFM images in normalized

position values. Horizontal bands correspond to vectorial extension (red) or retraction (blue) that favors movement, and vertical bands correspond to

circumferential extension or retraction that favors stable IS. Velocity plots and images correspond to Movie S9 (PKCq+/�) and Movie S11 (PKCq�/�).

The scale bar represents 2 mm.
During our time-lapse experiments, we noted that IS re-

location in naive T cells resulted from, or was coincident

with, a transient loss of symmetry of the pSMAC, which

breaks open and forms a crescent or forms more asym-

metric focal zones in the direction of movement (Movies

S1 and S2). We quantified this change by measuring the

distance between the cSMAC center and the center of

the ICAM-1 distribution, which is near zero in a symmetri-

cal IS, but up to 2–3 mm in a relocating cell (Figure 5 and

Table 1 [polarity]; see also Figure S7). Increases in this

distance were coincident with speed of relocation. Taken

together, our results indicate that PKCq was required

for pSMAC symmetry breaking and relocation but not IS

formation or dSMAC dynamics.

WASp�/� T Cell pSMACs Remain Asymmetric: WASp

Favors Reforming of the IS after Migration

Breaking the pSMAC could be mediated by an imbalance

in contractile forces mediated by myosin II (Verkhovsky

et al., 1999). It has been shown that a PKCq-dependent

complex of WIP and myosin II is antagonized in a resting

NK cell line by WASp (Krzewski et al., 2006). We investi-

gated the role of WASp in IS symmetry breaking.

WASp�/� T cells formed IS; PKCq was localized to
the pSMAC at 15 min (Table 1 and Figure 6A). After

�20 min, the T cells polarized and laterally migrated as

wild-type cells do. However, the WASp�/� T cells did

not regain symmetry in the pSMAC to stop IS relocation,

thus resulting in sustained asymmetry and faster migration

speeds of the naive WASp�/� T cells until they detached

from the substrate after �1 hr (Figures 5B and 6B and

Table 1; see also Movie S13). A small molecule inhibitor

of PKCq (Cywin et al., 2007) stopped WASp�/� naive

T cell relocation, reduced T cell polarity, and restored

pSMAC symmetry and stability over 90 min (Figure 5B,

bottom, and Figures 6B and 6C; see also Movie S14).

This result is consistent with WASp acting as a negative

regulator of a symmetry-breaking process activated by

PKCq. Thus, naive T cells with both PKCq and WASp ac-

tivities periodically relocate their IS through reversibly

changing the pSMAC to a focal zone, without loss of the

dSMAC and cSMAC zones.

DISCUSSION

This study generated a series of surprising findings re-

garding the nature of the IS during naive T cell activation

and regarding the roles of PKCq and WASp in this
Cell 129, 773–785, May 18, 2007 ª2007 Elsevier Inc. 779



Figure 5. The pSMAC ICAM Ring

Undergoes Shape Changes that Corre-

late with Speed

Naive AND TCR Tg T cells interacted with bila-

yers and ICAM-1 images were captured every

90 s over 90 min. Cell tracks are shown on

the left panel with arrows indicating the starting

point. The plot on the right shows the cor-

responding instantaneous velocity plot and T

cell polarity as measured by the distance be-

tween the pSMAC and cSMAC centroids (see

Supplemental Experimental Procedures, Fig-

ures S7 and S9).

(A) Two examples of PKCq+/� WASP+/+ AND

T cells. See Figure S7 for scale.

(B) PKCq+/+ WASp�/� AND T cells without (top)

and with (bottom) PKCq inhibitor. Inhibitor was

added at the time indicated with arrowhead.

Pooled data are also summarized in Table 1.

The scale bar represents 4 mm. The PKCq+/+

WASp�/� AND T cell without inhibitor was

followed until it detached from the bilayer.
process. First, PKCq is not required to form an IS. Second,

the ISs of wild-type naive T cells are broken during the first

2 hr after IS formation because of periodic breaks in

pSMAC symmetry. Third, PKCq is required for these

breaks in pSMAC symmetry. Fourth, the dSMAC of the

IS has markers and dynamics that are lamellipodium

like, and the dynamic and radial nature of this structure

is retained even when the symmetry of the pSMAC is bro-

ken. Fifth, WASp is required for reforming the IS after the

initial break in symmetry. Sixth, an inhibitor to PKCq

rescues pSMAC reformation in WASp-deficient T cells.
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Finally, T cells that periodically break the symmetry of

the IS had a functional advantage over their stable coun-

terparts by making more IL-2. These results change the

way we think about IS stability during T cell priming and

identify new functions for PKCq and WASp in control of

pSMAC symmetry.

PKCq has been seen as the prototypical marker of the

cSMAC, the central TCR and Lck-rich cluster in the IS

(Monks et al., 1998). We have shown that the zones of

the naive T cell IS are well reproduced by the supported

planar bilayer system including TCR in the cSMAC,



Figure 6. WASp Is Required to Reform the IS

(A) WASp is not required to form the initial IS.

(B) Naive WASp+/+ or WASp�/� AND T cells interacted on bilayers for 20 min, and then 1 mM PKCq inhibitor was added. T cells interacted for another

20 min. The T cell speed was measured, before (none, black bars) and with (treatment, gray bars) the addition of the inhibitor, and averaged. Averages

and SD are shown. *t test preinhibitor versus postinhibitor (p < 0.00001); **T test WASp+/+ versus WASp�/� preinhibitor (p < 0.00001).

(C) Images of WASp T cells (i) forming IS, (ii) breaking the IS before treatment with inhibitor, (iii) with inhibitor treatment, and (iv) reforming IS with

inhibitor treatment.
ICAM-1 in the pSMAC, and CD45 in the dSMAC, but we

found that PKCq is located in the pSMAC, or the

pSMAC/dSMAC junction, rather than the cSMAC. This is

not unprecedented in cell-cell systems in that PKCq has

been observed in the pSMAC of T cell-APC junctions

(Sanchez-Lockhart et al., 2004). Recently, we have pro-
posed that the cSMAC is largely involved in degradation,

whereas signaling is sustained in TCR microclusters in

the dSMAC and pSMAC (Varma et al., 2006). Although it

was assumed that PKCq concentrated in the cSMAC is

engaged in signaling, it is equally possible that in this loca-

tion it has been targeted by ubiquitin E3 ligases for
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degradation (Heissmeyer et al., 2004). Because we have

related PKCq presence in the pSMAC to symmetry break-

ing and relocation, a possible strategy to generate highly

stable IS in vivo would be to move PKCq from the pSMAC

to the cSMAC. T-B conjugates, in which PKCq is targeted

to the cSMAC, are the most stable T cell-APC ISs in vitro

and in vivo (Monks et al., 1998; Okada et al., 2005). Planar

bilayers with MHC, ICAM-1, and CD80 lack signals

needed to target PKCq to the cSMAC, which could be

further investigated with this system, and display IS

relocation similar in magnitude to T cells forming stable

interactions with DC in vivo.

The dSMAC appears to play critical roles in sustained

signaling by allowing formation of small TCR clusters

that are required for sustained signaling (Varma et al.,

2006). The generation of dynamic actin in the periphery

of model ISs has been shown to require the WAVE2 com-

plex and the cortactin homolog HS-1, both activators of

Arp2/3-mediated F-actin polymerization (Gomez et al.,

2006; Nolz et al., 2006). Consistent with this, we found

that the dSMAC is enriched in F-actin, cofilin, and Arp3.

PKCq is not required for localization of dSMAC/lamellipo-

dial markers (data not shown) or contractile oscillations in

the dSMAC, and these contractions require regulated

myosin II activity (Giannone et al., 2004). Dynamic actin

structures that mediate contractile oscillations in the

dSMAC renew T cell-APC contacts to form new TCR mi-

croclusters. It remains to be determined whether the

dSMAC is essential for TCR microcluster formation or

whether alternative mechanisms exist if dSMAC formation

is blocked. Contractile oscillations may allow force sens-

ing. T cells may sense the forces exerted by the APC on

molecular clusters of MHC-peptide complexes and adhe-

sion molecules that interact with the APC cytoskeleton.

This may be analogous to mechanisms used by fibro-

blasts to sense extracellular matrix rigidity (Giannone

et al., 2004). The DC cytoskeleton plays an important

role in T cell-APC interactions (Al-Alwan et al., 2001). Con-

sistent with this, barriers to lateral transport of TCR and

LFA-1 microclusters in the lipid bilayer containing the

MHC-peptide complexes and ICAM-1 enhances TCR-

mediated signaling (Mossman et al., 2005).

Helper T cells provide to DCs signals that enhance

aspects of the immune response such as CD8 T cell acti-

vation and memory (Ridge et al., 1998). Periodic breaking

of the symmetrical lamella-like pSMAC to form a polarized

focal zone, thus allowing short bursts of migration, may fa-

cilitate T cell interaction with multiple DCs (Lindquist et al.,

2004). T cells thus may provide critical signals to multiple

cells within the local DC network, rather than only one DC

as would be the result of a stable IS, to facilitate amplifica-

tion of the immune response. Because TCR microclusters

are formed in the dSMAC, the maintenance of this radial

lamellipodial means that relocating T cells can sense anti-

gen-positive APC and compare the newly encountered to

the earlier encountered APC (Depoil et al., 2005).

Our intravital-microscopy observations provide insight

into the ability of PKCq-deficient T cells to mount some
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types of immune responses in vivo despite profound acti-

vation defects in vitro (Marsland et al., 2004). The in vivo

environment stimulates very effective PKCq-independent

surveillance of DC networks by naive T cells. This sug-

gests that PKCq is not required to respond to chemotactic

and chemokinetic signals associated with secondary

lymphoid tissues, consistent with the normal cellularity

of these tissues in PKCq�/� mice (Sun et al., 2000). The

in vivo difference between PKCq+/+ and PKCq�/� T cells

we detected was greater positional stability at 3–8 hr after

antigen exposure, and this is likely to correspond to

greater IS stability. The destabilized IS speed in vivo

(�4 mm/min) is intermediate between accepted speeds

for arrest (<2 mm/min) and free migration (>6 mm/min)

and falls in the same range as the long-term T-DC conju-

gate interactions (�2–5 mm/min) (Mempel et al., 2004). The

major phenotypic defect in PKCq-deficient mice in vivo is

the failure to make Th2 responses in the context of allergic

airway reactivity and parasitic-infection models (Marsland

et al., 2004; Salek-Ardakani et al., 2004). Interestingly, T

cells from WASp-deficient patients, cells that also have

some function in vivo, have been shown to have defects

in producing Th1 cytokines (Trifari et al., 2006). Thus, sta-

ble IS may be important for Th1 responses, whereas the

ability to relocate IS may be important for Th2 responses.

The reformation of IS favored by WASp may regulate T cell

differentiation by promoting asymmetric cell divisions

(Dustin and Chan, 2000). Recently, Chang et al. have

found that ISs lead to asymmetric cell divisions important

for memory/effector differentiation (Chang et al., 2007).

We have described the autonomous relocation of naive

T cell ISs and provided genetic evidence for a control

pathway. First, we show that PKCq allows T cells to break

the symmetry of the pSMAC, thus promoting slow migra-

tion via an asymmetric LFA-1 focal zone (lamella) (Smith

et al., 2005). Interestingly, this symmetry breaking is

restricted to the pSMAC because the dSMAC appears

to retain radial symmetry as reflected in contractile oscilla-

tions. Then we show that WASp allows T cells to reform

their IS by re-establishing a symmetric pSMAC. Further-

more, pSMAC re-establishment in WASp-deficient T cells

can be rescued by inhibition of PKCq with a selective

inhibitor. A biochemical framework for our results is

provided by a recent study in NK cells where it was shown

that cell activation allowed PKCq-mediated WIP asso-

ciation that is independent of WASp with myosin IIA.

Although these interactions were important for NK cell

function, their specific role in control of the NK cell IS

was not explored. We have found PKCq in the integrin-

rich pSMAC, where it is well positioned to control tension

in the F-actin network leading to periodic ‘‘tearing open’’

of the ring to generate an asymmetric focal zone (Smith

et al., 2005; Verkhovsky et al., 1999). We speculate that in-

hibition of myosin IIA by WASp inclusion in this complex

may allow the symmetric pSMAC to reform after a period

of relocation. Along these lines, previously activated

PKCq+/+ T cells migrate 2- to 3-fold more quickly than

PKCq�/� T cells on ICAM-1 substrates (data not shown).



This is consistent with PKCq boosting lamellar traction

forces through a myosin-II-dependent process (Pollard

and Borisy, 2003). The immunological synapse provides

a new model for genetic control of symmetry breaking

and reestablishment, a model that has direct implications

for T cell and NK cell function.

EXPERIMENTAL PROCEDURES

T Cell Purification

PKCq�/� and WASp�/� mice have been described elsewhere (Snap-

per et al., 1998; Sun et al., 2000). PKCq�/� were backcrossed to B6

for 15 generations and to B10D2 for ten generations. PKCq�/� and

WASp�/� B6 mice were crossed onto AND TCR transgenic mice.

D011.10 TCR transgenic mice with the B10D2.PKCq�/� were used in

these antigen specific in vivo experiments. Naive CD4+ T cells from

lymph nodes and spleens were negatively purified with magnetic

beads (Miltenyi Biotech).

Bilayers

Bilayers preparation has been described in detail elsewhere. In brief,

mouse ICAM-1 with a glycophosphatidyl inositol anchor (ICAM-1-

GPI) labeled with Cy5 (Grakoui et al., 1999) and I-Ek was purified

from transfected CHO cells and labeled with Oregon Green (OG) and

loaded with MCC peptide. All data shown are at an I-Ek-MCC density

of 10 molecules/mm2. Mouse CD80 with a glycophosphatidyl inositol

anchor (CD80-GPI) was also used. See the Supplemental Data.

T Cell Electroporation

Naive lymph-node cells were electroporated in accordance with

Amaxa protocols. The PKCq-yfp construct was purified with endo-

toxin-free conditions (Qiagen). Cells were used after 6 hr of incubation.

Reagents and Staining

The PKCq inhibitor (compound #20) was kindly provided by Boeh-

ringer-Ingelheim Pharmaceuticals, Inc. (Cywin et al., 2007). It was dis-

solved in DMSO (0.1% final concentration) and did not inhibit ICAM-1

accumulation, phosphotyrosine staining, or lamellipodium-like exten-

sion formation under the same conditions as it inhibited migration

(Figure S8). DMSO alone did not change migration (t test, instanta-

neous speed of naive T cells treated with our without DMSO, p = 0.11).

Cytokine-secretion assays were performed with the Miltenyi Biotec

IL2 capture assay, in accordance with the manufacturer’s instructions

with the following changes: T cells were allowed to interact with bila-

yers at 37�C for 15 min, were washed, and then were stained with

the capture reagent for 10 min and washed again. Cells interacted

with the bilayers and were imaged hourly for 4 or 6 hr and then were

stained with the IL2 detection reagent for 10 min. The cells were im-

aged immediately after washing. Measurements of the plasma mem-

brane were taken for quantitation.

For staining the T cell-bilayer interface, cells interacted with the bila-

yers for 30 min to 2 hr in imaging buffer. Cells were fixed with 2% PFA,

permeablized with 0.05% Triton-X 100, and blocked in 100 mg/ml goat

IgG in imaging buffer. Cells were incubated with rabbit polycolonal

anti-PKCq (Santa Cruz, sc-212), mouse monoclonal anti-talin (Sigma,

T3287), rabbit polyclonal anti-cofilin (Cytoskeleton, ACFL02), mouse

monoclonal anti-TM (Sigma, T2780), sheep polyclonal anti-Arp3 (Cyto-

skeleton, AAR01), or biotinylated anti-phosphotyrosine (4G10, Upstate

Biotechnology) and then incubated with fluorescently tagged goat

anti-rabbit Fab2 (Molecular Probes, A-11071), goat anti-mouse Fab2

(Molecular Probes, A-11018), donkey anti-sheep IgG (Molecular

Probes, A-21099), or avidin (Molecular Probes, A-21370) that were

used as secondary reagents. F-actin was stained with phalloidin con-

jugated with Alexa 488 (Molecular Probes, A12379). For PKCq staining,

this combination gave specific staining 14-fold greater in PKCq+/+ T

cells than in PKCq�/� T cells. Secondary staining only in PKCq+/+ cells
was 10-fold reduced than the primary-secondary combination. Con-

tacts were imaged for staining by total internal-reflection microscopy

(TIRFM). TCR and CD45 were visualized with fluorescently labeled

monovalent Fab fragments (H57 and I3/2.3, respectively). Latrunculin

A was used at 1 mM (Sigma-Aldrich, L5163).

Microscopy and Image Analysis

An inverted wide-field microscope with cooled CCD camera (Yona

Microscopes) was used for multicolor fluorescence, interference re-

flection microscopy (Grakoui et al., 1999), and TIRFM. A Zeiss LSM

510 confocal microscope (Carl Zeiss) was used for intravital micros-

copy. Image processing and bilayer calibration were performed with

IP-Lab (Scanalytics), Metamorph (Molecular Devices), Image J, or

Volocity (Improvision) software.

Morphology Analysis

Cells on bilayers were analyzed for morphology changes with Meta-

morph and Image J. The centroid of the mass of ICAM-1 accumulation

and then the continuous outer boundary of fluorescence intensity were

found with Metamorph (pSMAC). ICAM-1 exclusion centroids

(cSMAC) were tracked in Image J. The distance between the cSMAC

and pSMAC (Figure S9) was plotted. For the average instantaneous

velocity plot and cSMAC-pSMAC distances, the rolling average of

five frames was plotted for each time point.

Long-Term IS Stability

Naive PKCq+/� or PKCq+/+ and PKCq�/�AND TCR transgenic (Tg) cells

from littermates were vitally labeled with CFSE or CMRA (or one geno-

type was left unlabeled), mixed together in combinations, and allowed

to interact with bilayers for 4 hr at 37�C. Nonadherent cells were

washed. Cells in 8–12 fields were imaged hourly from 30–180 min.

The nonmotile population of cells was tracked frame by frame for

each genotype, and ISs were scored as stable if they stayed within

one cell diameter of their original location at 30 min. Specifically, we

recorded the initial IS position after 30 min of IS formation and consid-

ered the IS stable if it remained within 10 mm of its initial position over

one hour. These experiments were repeated with PKCq+/� or PKCq+/+

and PKCq�/� 2B4 and 5CC7 TCR Tg cells and similar results were

found. Mice were matched for their TCR Tg expression levels.

Intravital Microscopy

B10D2 mice were injected IV with combinations of PKCq�/� and

PKCq+/+ DO11.10 TCR Tg and B10D2 purified naive T cells that were

vitally labeled (Molecular Probes). Mice were left untreated or were

injected with ovalbumin peptide. Spleens were exposed for intravital-

imaging analysis. Animals were maintained at 37�C and on O2 through-

out imaging. T cells were scored as stopped if they remained within

three cell diameters of their original location from the start of image

acquisition to 20 min. More details are provided in the Supplemental

Data.

Membrane Dynamics

CD4+ naive T cells were purified from littermate AND PKCq�/� or

PKCq+/� mice and incubated on bilayers containing ICAM-1-Cy5

and unlabeled I-Ek and CD80. Cells were vitally labeled with the cyto-

plasmic fluorescent dye Calcein AM (Molecular Probes), and images

of contacts were acquired by TIRFM every 3 or 12 s for �15 min. For

velocity calculations, see the Supplemental Data.

Supplemental Data

Supplemental Data includes additional Experimental Procedures, nine

figures, and fourteen movies and can be found with this article online at

http://www.cell.com/cgi/content/full/129/4/773/DC1/.
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