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Machine Learning

“

applies social sciences techniques, including
algorithmic game theory, economics, network analysis,

psychology, ethnography, and mechanism design, to
online situations.”

http://research.yahoo.com
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SOCIAL SCIENCE

A field is emerging that leverages the
capacity to collect and analyze data at a

com p utati 0 n a I Soc i a I sc i e n ce scale that may reveal patterns of individual

and group behaviors.

David Lazer,! Alex Pentland,2 Lada Adamic,® Sinan Aral 2* Albert-Laszl6 Barabasi,®
Devon Brewer, Nicholas Christakis,' Noshir Contractor,” James Fowler,? Myron Gutmann,®
Tony Jebara,® Gary King,! Michael Macy," Deb Roy,2 Marshall Van Alstyne?"!

Jake Hofman

“

. a computational social science is emerging that
leverages the capacity to collect and analyze data with an
unprecedented breadth and depth and scale ...”

http://sciencemag.org/content/323/5915/721
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SOCIAL SCIENCE s .
A field is emerging that leverages the

capacity to collect and analyze data at a

com p utati 0 n a I Soc i a I sc i e n ce scale that may reveal patterns of individual

and group behaviors.
David Lazer,! Alex Pentland,2 Lada Adamic,® Sinan Aral 2* Albert-Laszl6 Barabasi,®
Devon Brewer, Nicholas Christakis,' Noshir Contractor,” James Fowler,? Myron Gutmann,®
Tony Jebara,® Gary King,! Michael Macy," Deb Roy,2 Marshall Van Alstyne?"!

“

. shares with other nascent interdisciplinary fields
(e.g., sustainability science) the need to develop a
paradigm for training new scholars ..."”

http://sciencemag.org/content/323/5915/721
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The €lean real story

“We have a habit in writing articles published in
scientific journals to make the work as finished as
possible, to cover all the tracks, to not worry about the
blind alleys or to describe how you had the wrong idea
first, and so on. So there isn’t any place to publish, in
a dignified manner, what you actually did in order to
get to do the work ..."

-Richard Feynman
Nobel Lecture!, 1965

"http://bit.1ly/feynmannobel
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Outline

e The clean story
e The real story

e Lessons learned
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Demographic diversity on the Web

with Irmak Sirer and Sharad Goel

The clean story

(covering our tracks)
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Motivation

Science 17 April 1998 < Prev | Table of Contents | Next >
Vol. 280 no. 5362 pp. 390-391

DOl: 10.1126/science.280.5362.390

POLICY

INFORMATION ACCESS
Bridging the Racial Divide on the Internet

Donna L. Hoffman and Thomas P. Novak
+ Author Affiliations

The Internet is expected to do no less than transform society (1); its use has been increasing exponentially
since 1994 (2). But are all members of our society equally likely to have access to the Internet and thus

participate in the rewards of this transformation? Here we present findings both obvious and surprising from a
recent survey of Internet access and discuss their implications for social science research and public policy.

Previous work is largely survey-based and focuses and group-level
differences in online access
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Motivation

“As of January 1997, we estimate that 5.2 million
African Americans and 40.8 million whites have ever used
the Web, and that 1.4 million African Americans and
20.3 million whites used the Web in the past week.”

-Hoffman & Novak (1998)
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Motivation
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Figure 6: Relative saturation of ethnicities on Facebook. As the
lines converge towards 100% (center), the makeup of U.S. Facebook

converges towards that of the addressable Internet population.

Chang, et. al., ICWSM (2010)
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Motivation

Focus on activity instead of access

How diverse is the Web?

To what extent do online experiences vary across demographic
groups?
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Data

niclsen MegaPanel

LI I I I

e Representative sample of 265,000 individuals in the US, paid
via the Nielsen MegaPanel?

e Log of anonymized, complete browsing activity from June
2009 through May 2010 (URLs viewed, timestamps, etc.)

e Detailed individual and household demographic information
(age, education, income, race, sex, etc.)

2Special thanks to Mainak Mazumdar
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Data

e Transform all demographic attributes to binary variables
e.g., Age — Over/Under 25, Race — White/Non-White,
Sex — Female/Male
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Data

e Transform all demographic attributes to binary variables
e.g., Age — Over/Under 25, Race — White/Non-White,
Sex — Female/Male

e Normalize pageviews to at most three domain levels, sans www
e.g. www.yahoo.com — yahoo.com,
us.mg2.mail.yahoo.com/neo/launch — mail.yahoo.com
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Data

e Transform all demographic attributes to binary variables
e.g., Age — Over/Under 25, Race — White/Non-White,
Sex — Female/Male

e Normalize pageviews to at most three domain levels, sans www
e.g. www.yahoo.com — yahoo.com,
us.mg2.mail.yahoo.com/neo/launch — mail.yahoo.com

e Restrict to top 100k (out of 9M+ total) most popular sites
(by unique visitors)
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Data

Transform all demographic attributes to binary variables
e.g., Age — Over/Under 25, Race — White/Non-White,
Sex — Female/Male

Normalize pageviews to at most three domain levels, sans www
e.g. www.yahoo.com — yahoo.com,
us.mg2.mail.yahoo.com/neo/launch — mail.yahoo.com
Restrict to top 100k (out of 9M+ total) most popular sites
(by unique visitors)

Aggregate activity at the site, group, and user levels
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Site-level skew

How diverse are site audiences?

e For each site and attribute, ,
calculate the skew in visitors
(e.g., 93% of pageviews on
foxnews.com are by White
users)

Density

e For each attribute, plot the
distribution of visitor skew
across all sites

T T T n
0.0 0.2 0.4 0.6 0.8 1.0
Proportion White Visitors
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foxnews.com

Site-level skew

Density
Density
Density

| | | U | | | | | | t i
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10
Proportion Female Visitors Proportion White Visitors Proportion College Educated Visitors

b 2
z 2
a
1 | | | N | i
| | | | - 00 02 04 06 08 10
0.0 0.2 0.4 0.6 0.8 1.0 Proportion of Visitors With
Proportion Adult Visitors Household Incomes Under $50,000

Jake Hofman  (hofman®@yahoo-inc.com) Learning from Web Activity ICSA, 2011.06.27 14 / 39



Site-level skew

Many sites have skew close the overall mean, but there also

popular, highly-skewed sites

Greater Than 90%

Less Than 10% ‘

Female

youravon.com
collectionsetc.com

coveritlive.com
needlive.com

‘White

foxnews.com
wunderground. com

blackplanet.com
mediatakeout.com

College Educated

news.google.com
nytimes.com

slumz.boxden.com
sythe.com

Over 25 Years Old

mail.yahoo.com
apps . facebook. com

nanowrimo.org
cbox.ws

Household Income
Under $50,000

scarleteen.com
boards.adultswim.com

opentable.com
marketwatch.com
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Site-level skew

This skew persists even when we restrict attention to the top 10k

Jake Hofman

Proportion Female Site Visitors
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Sites vs. ZIPs

How do diversity of the online and offline worlds compare?

[/]sites [/ sites
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=y =
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] i
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Proportion Female Proportion White
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Sites vs. ZIPs

How do diversity of the online and offline worlds compare?

[/]sites

4 - lzies

[/ sites

| zips

Density
Density

| | | | | ' | |
0.0 0.2 0.8 10 0.0 0.2 06 0.8 10

0. X o X
Proportion Female Proportion White

As expected, neighborhoods are more gender-balanced than sites
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Sites vs. ZIPs

How do diversity of the online and offline worlds compare?
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But sites typically have more racially diverse audiences than
neighborhoods have residents
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Group-level activity

(e.g. women on average generate 40% more pageviews than men)

Jake Hofman

How does browsing activity vary at the group level?

Daily Per—Capita Pageviews

704

60

50

40+

30

20

10+

Non-White

White

T
Race

...... X

College

No College "**

T
Education

Female Over 25

.
Male
“x
Under 25
T T
Sex Age

Large differences exist even at the aggregate level
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Group-level activity

All groups spend more than a third of their time on a handful of

Ing sites

[, search, and social network

emal

10% -
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Group-level activity

differently, both on

Ily popular and on more niche s
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Group-level activity

There is both reasonable overlap and variation amongst the most
popular sites within groups.

Over/Under 25 |
Years Old

Female/Male — .

Under/Over $50,000 |
Household Income

White/Non-White — .

College/No College — .

I I I I I I
00 02 04 06 08 10
Jaccard Similarity
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Individual-level prediction

How well can one predict an individual’'s demographics from their
browsing activity?

Represent each user by the set of sites visited

Fit linear models3 to predict majority/minority for each
attribute on 80% of users

Tune model parameters using a 10% validation set

Evaluate final performance on held-out 10% test set

3Using SVM-perf
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Individual-level prediction

Reasonable (~70-85%) accuracy and AUC across all attributes

AUC

Accuracy

Over/Under 25 _|
Years Old

Female/Male —

White/Non-White —

Under/Over $50,000 |
Household Income

College/No College —

X o
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Individual-level prediction

Highly-weighted sites under the fitted models

Large positive weight

Large negative weight

Female

winster.com
lancome-usa.com

sports.yahoo.com
espn.go.com

‘White

marlboro.com
cmt . com

mediatakeout.com
bet.com

College Educated

news.yahoo.com
linkedin.com

youtube.com
myspace. com

Over 25 Years Old

evite.com
classmates.com

addictinggames.com
youtube.com

Household Income
Under $50,000

eharmony . com
tracfone.com

rownine.com
matrixdirect.com

(hofman®@yahoo-inc.com)
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Individual-level prediction

Similar performance even when restricted to top 1k sites
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Individual-level prediction

Substantially better performance when restricted to “stereotypical”
users (~80-90%)
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Individual-level prediction

Proof of concept browser demo

From the 28 sites we found in your browser history, it appears that you're a caucasian male who is over 25 years old with a college education
earning over $50K per year.

male

over 25
caucasian
college

over SS0K

50% 60% 70% 80% 90% 100%

http://bit.ly/surfpreds
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Demographics diversity on the Web

with Irmak Sirer and Sharad Goel

The real story
(what we actually did)
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The real story

0. Got several hundred GBs of MegaPanel data from Nielsen*,
looked at a small sample

# 1s -alh nielsen_megapanel.tar
-rw-r——-r-—- 100G Jul 17 13:00 nielsen_megapanel.tar

*Special thanks to Mainak Mazumdar
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The real story

1. Discussed (many) possible projects

e Infer the number of individuals using the same browser or
behind the same ip?

e Determine number of actual uniques advertisers are receiving?

e Predict user demographics from a few minutes of browsing
activity for ad-targeting?
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The real story

2. Modeled real-valued age as a function of site visits

e Worked on this for an embarassingly long time

e Tried various options for cleaning and normalizing data
(100GB — ~5GB)

e Investigated several methods for feature selection
(e.g., naive Bayes, mutual information, popularity)
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Hadoop + Pig (+ awk)

define streaming command for normalizing urls
DEFINE add_star_domains “awk ‘n=split{$2,a,"."); (n==3) {print s1"\t+."a[2]"."a[3]"\t"53}"'";

—— flatten user histories
user_pageviews = FOREACH users GENERATE
uid,
FLATTEN(history) AS {did, pageviews, weight);

== join user pageviews against top domains
user_pageviews = JOIN user_pageviews BY did, top_domains BY did USING 'replicated’';
user_pageviews = FOREACH user_pageviews GENERATE

user_pageviews::uid AS uid,

top_domains::domain AS domain,

user_pageviews::pageviews AS pageviews;

—— stream through awk to extract two-level domains (e.q. *.yahoo.com)
user_pageviews = STREAM user_pageviews THROUGH add_star_domains AS {uid:long, domain:chararray, pageviews:int);

—— regroup and count pageviews by normalized domains
-- (userid, normalized_domain, num_pageviews)
user_pageviews = GROUP user_pageviews BY (uid, domain) PARALLEL 10;
user_pageviews = FOREACH user_pageviews GENERATE
group.uid AS uid,
group.domain AS domain,
SUM{user_pageviews.pageviews) AS pageviews;
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The real story

3. Settled for classification of binary outcomes (e.g.
adult/non-adult)

e 265,000 users (examples) and 100,000 sites (features)

e Logistic regression in R, e.g.

model <- glm(is.adult ~ ., data=nielsen, family=binomial)

7Y
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The real story

3. Settled for classification of binary outcomes (e.g.
adult/non-adult)

y(xi)=w-x;+ b

Support Vector Machine :  L(y,9) = C>_; [1 — yiy(x)], + [|w][?
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The real story

4. Investigated why classification worked reasonably well

e Generated descriptive statistics across all attributes at the site
and group levels

e Compared site statistics to ZIP code data from the US Census

e Compared time distribution across groups
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The real story

5. Realized that we now had one of the most comprehensive
studies available on demographic diversity of the web
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Conclusion

(lessons learned)
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Lessons learned

Data jeopardy

Regardless of scale, it's difficult to find the right questions to ask
of the data
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Lessons learned

Rapid iteration

The ability to iterate quickly, asking and answering many
questions, is crucial
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Lessons learned

Data cleaning

Cleaning and normalizing data is a substantial amount of the work
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Lessons learned

Modeling

Simple methods (e.g., linear models) work surprisingly well,
especially with lots of data
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Lessons learned

It's easy to cover your tracks—things are often much more
complicated than they appear
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Thanks. Questions?

http://messymatters.com/webdemo

http://jakehofman. com
hofman@yahoo-inc.com
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