

bayesian inference: principles and practice

jake hofman

http://jakehofman.com

july 9, 2009

伺 ト く ヨ ト く ヨ ト

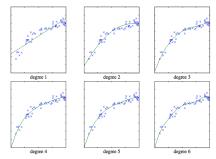
-

principles	
practice	

background bayes' theorem bayesian probability bayesian inference

motivation

- would like models that:
 - provide predictive and explanatory power
 - are complex enough to describe observed phenomena
 - are simple enough to generalize to future observations



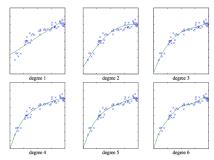
< ∃ → <

principles	
practice	

background bayes' theorem bayesian probability bayesian inference

motivation

- would like models that:
 - provide predictive and explanatory power
 - are complex enough to describe observed phenomena
 - are simple enough to generalize to future observations



• claim: bayesian inference provides a systematic framework to infer such models from observed data

background bayes' theorem bayesian probability bayesian inference

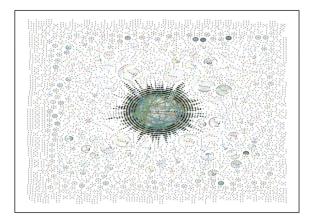
motivation

 principles behind bayesian interpretation of probability and bayesian inference are well established (bayes, laplace, etc., 18th century)

 recent advances in mathematical techniques and computational resources have enabled successful applications of these principles to real-world problems

background bayes' theorem bayesian probability bayesian inference

motivation: a bayesian approach to network modularity



background bayes' theorem bayesian probability bayesian inference

outline

1 principles (what we'd like to do)

- background: joint, marginal, and conditional probabilities
- bayes' theorem: inverting conditional probabilities
- bayesian probability: unknowns as random variables
- bayesian inference: bayesian probability + bayes' theorem
- 2 practice (what we're able to do)
 - monte carlo methods: representative samples
 - variational methods: bound optimization
 - references

▲ □ ▶ ▲ □ ▶ ▲

background bayes' theorem bayesian probability bayesian inference

joint, marginal, and conditional probabilities

joint distribution

$$p_{XY}(X = x, Y = y)$$
: probability $X = x$ and $Y = y$

conditional distribution

$$p_{X|Y}(X = x|Y = y)$$
: probability $X = x$ given $Y = y$

marginal distribution

$$p_X(X)$$
: probability $X = x$ (regardless of Y)

-

background bayes' theorem bayesian probability bayesian inference

sum and product rules

sum rule

sum out settings of irrelevant variables:

$$p(x) = \sum_{y \in \Omega_Y} p(x, y)$$
(1)

product rule

the joint as the product of the conditional and marginal:

$$p(x,y) = p(x|y)p(y)$$
 (2)
= $p(y|x)p(x)$ (3)

イロト イポト イヨト イヨト

background bayes' theorem bayesian probability bayesian inference

outline

1 principles (what we'd like to do)

- background: joint, marginal, and conditional probabilities
- bayes' theorem: inverting conditional probabilities
- bayesian probability: unknowns as random variables
- bayesian inference: bayesian probability + bayes' theorem
- practice (what we're able to do)
 monte carlo methods: representative samples
 - variational methods: bound optimization
 - references

background bayes' theorem bayesian probability bayesian inference

inverting conditional probabilities

equate far right- and left-hand sides of product rule

$$p(y|x) p(x) = p(x, y) = p(x|y) p(y)$$
 (4)

and divide:

bayes' theorem (bayes and price 1763)

the probability of Y given X from the probability of X given Y:

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$
(5)

where $p(x) = \sum_{y \in \Omega_Y} p(x|y) p(y)$ is the normalization constant

(日) (同) (三) (三)

background bayes' theorem bayesian probability bayesian inference

example: diagnoses a la bayes

- population 10,000
- 1% has (rare) disease
- test is 99% (relatively) effective, i.e.
 - given a patient is sick, 99% test positive
 - given a patient is healthy, 99% test negative

- 4 同 ト 4 ヨ ト 4 ヨ ト

background bayes' theorem bayesian probability bayesian inference

example: diagnoses a la bayes

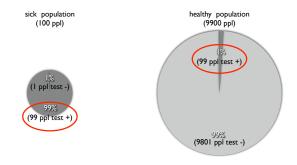
- population 10,000
- 1% has (rare) disease
- test is 99% (relatively) effective, i.e.
 - given a patient is sick, 99% test positive
 - given a patient is healthy, 99% test negative
- given positive test, what is probability the patient is sick?¹

¹follows wiggins (2006)

A 3 3 4 4

background bayes' theorem bayesian probability bayesian inference

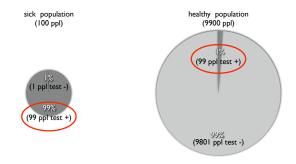
example: diagnoses a la bayes



• 99 sick patients test positive, 99 healthy patients test positive

background bayes' theorem bayesian probability bayesian inference

example: diagnoses a la bayes



- 99 sick patients test positive, 99 healthy patients test positive
- given positive test, 50% probability that patient is sick

background bayes' theorem bayesian probability bayesian inference

example: diagnoses a la bayes

- know probability of testing positive/negative given sick/healthy
- use bayes' theorem to "invert" to probability of sick/healthy given positive/negative test

$$p(sick|test +) = \underbrace{\frac{p(test + |sick)}{p(test +)}}_{198/100^2} \underbrace{\frac{p(test +)}{p(sick)}}_{198/100^2} = \frac{99}{198} = \frac{1}{2} \quad (6)$$

< ロ > < 同 > < 三 > < 三 > 、

background bayes' theorem bayesian probability bayesian inference

example: diagnoses a la bayes

- know probability of testing positive/negative given sick/healthy
- use bayes' theorem to "invert" to probability of sick/healthy given positive/negative test

$$p(sick|test +) = \underbrace{\frac{p(test + |sick)}{p(test +)}}_{198/100^2} \underbrace{\frac{99}{100}}_{198} \underbrace{\frac{1}{100}}_{198} = \frac{99}{198} = \frac{1}{2} \quad (6)$$

• most "work" in calculating denominator (normalization)

イロト イポト イヨト イヨト

background bayes' theorem bayesian probability bayesian inference

outline

1 principles (what we'd like to do)

- background: joint, marginal, and conditional probabilities
- bayes' theorem: inverting conditional probabilities
- bayesian probability: unknowns as random variables
- bayesian inference: bayesian probability + bayes' theorem
- practice (what we're able to do)
 monte carlo methods: representati
 - variational methods: bound optimization
 - references

・ 同 ト ・ ヨ ト ・ ヨ

background bayes' theorem bayesian probability bayesian inference

interpretations of probabilities (just enough philosophy)

- frequentists: limit of relative frequency of events for large number of trials
- bayesians: measure of a state of knowledge, quantifying degrees of belief (jaynes 2003)

background bayes' theorem bayesian probability bayesian inference

interpretations of probabilities (just enough philosophy)

- frequentists: limit of relative frequency of events for large number of trials
- bayesians: measure of a state of knowledge, quantifying degrees of belief (jaynes 2003)
- key difference: bayesians permit assignment of probabilities to unknown/unobservable hypotheses (frequentists do not)

background bayes' theorem bayesian probability bayesian inference

interpretations of probabilities (just enough philosophy)

- e.g., inferring model parameters Θ from observed data \mathcal{D} :
 - frequentist approach: calculate parameter setting that maximizes likelihood of data (point estimate),

$$\widehat{\Theta} = \underset{\Theta}{\operatorname{argmax}} p(\mathcal{D}|\Theta) \tag{7}$$

• bayesian approach: calculate distribution over parameter settings given data,

$$p(\Theta|\mathcal{D}) = ? \tag{8}$$

background bayes' theorem bayesian probability bayesian inference

outline

1 principles (what we'd like to do)

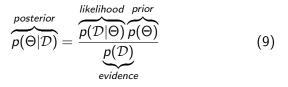
- background: joint, marginal, and conditional probabilities
- bayes' theorem: inverting conditional probabilities
- bayesian probability: unknowns as random variables
- \bullet bayesian inference: bayesian probability + bayes' theorem
- 2 practice (what we're able to do)
 - monte carlo methods: representative samples
 - variational methods: bound optimization
 - references

・ 同 ト ・ ヨ ト ・ ヨ

background bayes' theorem bayesian probability bayesian inference

bayesian probability + bayes' theorem

- bayesian inference:
 - treat unknown quantities as random variables
 - use bayes' theorem to systematically update prior knowledge in the presence of observed data



イロト イポト イヨト イヨト

background bayes' theorem bayesian probability bayesian inference

example: coin flipping

- observe independent coin flips (bernoulli trials)
- infer distribution over coin bias

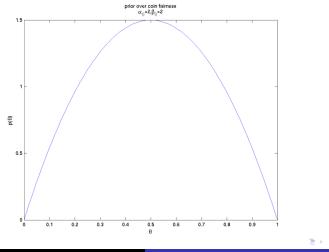
< ロ > < 同 > < 三 > < 三 > 、

-

background bayes' theorem bayesian probability bayesian inference

example: coin flipping

prior $p(\Theta)$ over coin bias before observing flips



jake hofman bayesian inference: principles and practice

background bayes' theorem bayesian probability bayesian inference

example: coin flipping

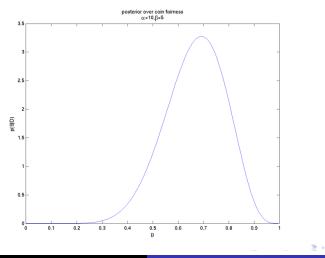
observe flips: HTHHHTTHHHH

・ロン ・雪 と ・ ヨ と ・ ヨ と

background bayes' theorem bayesian probability bayesian inference

example: coin flipping

update posterior $p(\Theta|\mathcal{D})$ using bayes' theorem



jake hofman bayesian inference: principles and practice

background bayes' theorem bayesian probability bayesian inference

example: coin flipping

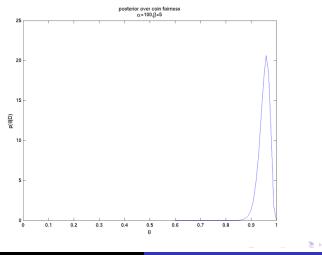
- 4 同 6 4 日 6 4 日 6

-

background bayes' theorem bayesian probability bayesian inference

example: coin flipping

update posterior $p(\Theta|\mathcal{D})$ using bayes' theorem



jake hofman bayesian inference: principles and practice

background bayes' theorem bayesian probability bayesian inference

quantities of interest

- bayesian inference maintains full posterior distributions over unknowns
- many quantities of interest require expectations under these posteriors, e.g. posterior mean and predictive distribution:

$$\bar{\Theta} = \mathbb{E}_{p(\Theta|\mathcal{D})} \left[\Theta\right] = \int d\Theta \ \Theta \ p(\Theta|\mathcal{D}) \tag{10}$$

$$p(x|\mathcal{D}) = \mathbb{E}_{p(\Theta|\mathcal{D})} \left[p(x|\Theta, \mathcal{D}) \right] = \int d\Theta \ p(x|\Theta, \mathcal{D}) \ p(\Theta|\mathcal{D})$$
(11)

イロト イポト イヨト イヨト

background bayes' theorem bayesian probability bayesian inference

quantities of interest

- bayesian inference maintains full posterior distributions over unknowns
- many quantities of interest require expectations under these posteriors, e.g. posterior mean and predictive distribution:

$$\bar{\Theta} = \mathbb{E}_{p(\Theta|\mathcal{D})} \left[\Theta\right] = \int d\Theta \ \Theta \ p(\Theta|\mathcal{D}) \tag{10}$$

$$p(x|\mathcal{D}) = \mathbb{E}_{p(\Theta|\mathcal{D})} \left[p(x|\Theta, \mathcal{D}) \right] = \int d\Theta \ p(x|\Theta, \mathcal{D}) \ p(\Theta|\mathcal{D})$$
(11)

 often can't compute posterior (normalization), let alone expectations with respect to it → approximation methods

イロト イポト イヨト イヨト

sampling methods variational methods references

outline

- principles (what we'd like to do)
 - background: joint, marginal, and conditional probabilities
 - bayes' theorem: inverting conditional probabilities
 - bayesian probability: unknowns as random variables
 - bayesian inference: bayesian probability + bayes' theorem

practice (what we're able to do)
 monte carlo methods: representative samples
 variational methods: bound optimization
 references

sampling methods variational methods references

representative samples

• general approach: approximate intractable expectations via sum over representative samples²

$$\Phi = \mathbb{E}_{p(x)} \left[\phi(x) \right] = \int dx \qquad \underbrace{\phi(x)}_{f(x)} \qquad \underbrace{p(x)}_{f(x)} \qquad (12)$$

arbitrary function target density

²follows mackay (2003), including stolen images ← □ → ← ∂ → ← ≥ → ← ≥ → → ≥ → ⊃ < ⊂ jake hofman bayesian inference: principles and practice

sampling methods variational methods references

representative samples

 general approach: approximate intractable expectations via sum over representative samples²

$$\Phi = \mathbb{E}_{p(x)} \left[\phi(x) \right] = \int dx \qquad \underbrace{\phi(x)}_{f(x)} \qquad \underbrace{p(x)}_{f(x)} \qquad (12)$$

arbitrary function target density

$$\widehat{\Phi} = \frac{1}{R} \sum_{r=1}^{R} \phi(x^{(r)})$$
(13)

²follows mackay (2003), including stolen images $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

sampling methods variational methods references

representative samples

 general approach: approximate intractable expectations via sum over representative samples²

$$\Phi = \mathbb{E}_{p(x)} \left[\phi(x) \right] = \int dx \qquad \underbrace{\phi(x)}_{f(x)} \qquad \underbrace{p(x)}_{f(x)} \qquad (12)$$

arbitrary function target density

$$\widehat{\Phi} = \frac{1}{R} \sum_{r=1}^{R} \phi(x^{(r)})$$
(13)

• shifts problem to finding "good" samples

²follows mackay (2003), including stolen images ← □ ▷ ← ⊕ ▷ ← ∈ ▷ → ∈ ≡ ▷ − ∈ ⊂ ⊃ へ ⊂ jake hofman bayesian inference: principles and practice

sampling methods variational methods references

representative samples

• further complication: in general we can only evaluate the target density to within a multiplicative (normalization) constant, i.e.

$$p(x) = \frac{p^*(x)}{Z} \tag{14}$$

and $p^*(x^{(r)})$ can be evaluated with Z unknown

sampling methods variational methods references

sampling methods

- monte carlo methods
 - uniform sampling
 - importance sampling
 - rejection sampling
 - . . .

- markov chain monte carlo (mcmc) methods
 - metropolis-hastings

(日) (同) (三) (三)

-

- gibbs sampling
- . . .

sampling methods variational methods references

uniform sampling

- sample uniformly from state space of all x values
- evaluate non-normalized density $p^*(x^{(r)})$ at each $x^{(r)}$
- approximate normalization constant as

$$Z_R = \sum_{r=1}^R p^*(x^{(r)})$$
(15)

estimate expectation as

$$\widehat{\Phi} = \sum_{r=1}^{R} \phi(x^{(r)}) \frac{p^{*}(x^{(r)})}{Z_{R}}$$
(16)

伺 ト く ヨ ト く ヨ ト

sampling methods variational methods references

uniform sampling

- sample uniformly from state space of all x values
- evaluate non-normalized density $p^*(x^{(r)})$ at each $x^{(r)}$
- approximate normalization constant as

$$Z_R = \sum_{r=1}^R p^*(x^{(r)})$$
 (15)

estimate expectation as

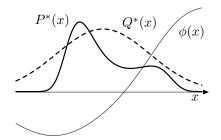
$$\widehat{\Phi} = \sum_{r=1}^{R} \phi(x^{(r)}) \frac{p^*(x^{(r)})}{Z_R}$$
(16)

• requires prohibitively large number of samples in high dimensions with concentrated density

sampling methods variational methods references

importance sampling

- modify uniform sampling by introducing a sampler density $q(x) = \frac{q^*(x)}{Z_Q}$
- choose q(x) simple enough that q*(x) can be sampled from, with hope that q*(x) is a reasonable approximation to p*(x)



同 ト イ ヨ ト イ ヨ ト

principles

sampling methods variational methods references

importance sampling

• adjust estimator by weighting "importance" of each sample

$$\widehat{\Phi} = \frac{\sum_{r=1}^{R} w_r \phi(x^{(r)})}{\sum_{R} w_r}$$
(17)

where

$$w_r = \frac{p^*(x^{(r)})}{q^*(x^{(r)})} \tag{18}$$

(日) (同) (三) (三)

-

sampling methods variational methods references

importance sampling

• adjust estimator by weighting "importance" of each sample

$$\widehat{\Phi} = \frac{\sum_{r=1}^{R} w_r \phi(x^{(r)})}{\sum_{R} w_r}$$
(17)

where

$$w_r = \frac{p^*(x^{(r)})}{q^*(x^{(r)})} \tag{18}$$

 difficult to choose "good" q*(x) as well as estimate reliability of estimator

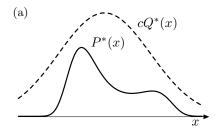
sampling methods variational methods references

rejection sampling

• similar to importance sampling, but proposal density strictly bounds target density, i.e.

$$cq^{*}(x) > p^{*}(x),$$
 (19)

for some known value c and all x



sampling methods

rejection sampling

- generate sample x from $q^*(x)$
- generate uniformly random number u from $[0, cq^*(x)]$
- add x to set {x^(r)} if p^{*}(x) > u
 estimate expectation as Φ̂ = 1/R Σ^R_{r=1} φ(x^(r))

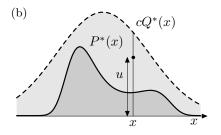
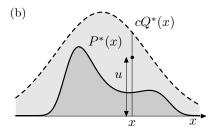


Image: A Image: A

sampling methods variational methods references

rejection sampling

- generate sample x from $q^*(x)$
- generate uniformly random number u from $[0, cq^*(x)]$
- add x to set $\{x^{(r)}\}$ if $p^*(x) > u$
- estimate expectation as $\hat{\Phi} = \frac{1}{R} \sum_{r=1}^{R} \phi(x^{(r)})$

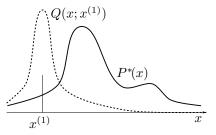


c often prohibitively large for poor choice of q*(x) or high dimensions

sampling methods variational methods references

metropolis-hastings

 use a local proposal density q(x'; x^(t)), depending on current state x^(t)



- construct markov chain through state space, converging to target density
- note: proposal density needn't closely approximate target density

| 4 同 1 4 三 1 4 三 1

sampling methods variational methods references

metropolis-hastings

- at time t, generate tenative state x' from $q(x'; x^{(t)})$
- evaluate

$$a = \frac{p^*(x^{(t)})}{p^*(x')} \frac{q(x^{(t)}; x')}{q(x'; x^{(t)})}$$
(20)

- if $a \ge 1$, accept the new state; else accept the new state with probability a
- if new state is rejected, set $x^{(t+1)} = x^{(t)}$

イロト イポト イヨト イヨト

sampling methods variational methods references

metropolis-hastings

- at time t, generate tenative state x' from $q(x'; x^{(t)})$
- evaluate

$$a = \frac{p^*(x^{(t)})}{p^*(x')} \frac{q(x^{(t)}; x')}{q(x'; x^{(t)})}$$
(20)

- if a ≥ 1, accept the new state; else accept the new state with probability a
- if new state is rejected, set $x^{(t+1)} = x^{(t)}$
- effective for high dimensional problems, but difficult to assess "convergence" of markov chain³

- 4 同 ト 4 目 ト 4 目 ト

sampling methods variational methods references

gibbs sampling

• metropolis method where proposal density is chosen as conditional distribution, i.e.

$$q(x'_{i}; x^{(t)}) = p\left(x_{i} | \{x^{(t)}_{j}\}_{j \neq i}\right)$$
(21)

 useful when joint density factorizes, as in sparse graphical model⁴

⁴see wainwright & jordan 2008 jake hofman bayesian inference: principles and practice

sampling methods variational methods references

gibbs sampling

• metropolis method where proposal density is chosen as conditional distribution, i.e.

$$q(x'_{i}; x^{(t)}) = p\left(x_{i} | \{x^{(t)}_{j}\}_{j \neq i}\right)$$
(21)

- useful when joint density factorizes, as in sparse graphical model⁴
- similar difficulties to metropolis, but no concerns about adjustable parameters

sampling methods variational methods references

outline

- principles (what we'd like to do)
 - background: joint, marginal, and conditional probabilities
 - bayes' theorem: inverting conditional probabilities
 - bayesian probability: unknowns as random variables
 - bayesian inference: bayesian probability + bayes' theorem

Practice (what we're able to do)

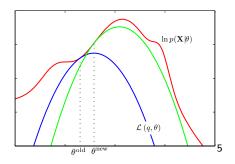
- monte carlo methods: representative samples
- variational methods: bound optimization
- references

/₽ ► < ≡ ► <

sampling methods variational methods references

bound optimization

- general approach: replace integration with optimization
- construct auxiliary function upper-bounded by log-evidence, maximize auxiliary function



⁵image from bishop (2006)

jake hofman

bayesian inference: principles and practice

- 4 同 6 4 日 6 4 日 6

principles

sampling methods variational methods references

variational bayes

 bound log of expected value by expected value of log using jensen's inequality⁶:

$$-\ln p(\mathcal{D}) = -\ln \int d\Theta \ p(\mathcal{D}|\Theta)p(\Theta)$$

= $-\ln \int d\Theta \ \frac{p(\mathcal{D}|\Theta)p(\Theta)}{q(\Theta)}q(\Theta)$
 $\leq -\int d\Theta \ \ln \left[\frac{p(\mathcal{D}|\Theta)p(\Theta)}{q(\Theta)}\right]q(\Theta)$

 for sufficiently simple (i.e. factorized) approximating distribution q(Θ), right-hand side can be easily evaluated and optimized

iake hofman

⁶image from feynman (1972)

- 4 同 ト 4 ヨ ト 4 ヨ ト

sampling methods variational methods references

variational bayes

- iterative coordinate ascent algorithm provides controlled analytic approxmations to posterior and evidence
- approximate posterior $q(\Theta)$ minimizes kullback-leibler distance to true posterior
- resulting deterministic algorithm is often fast and scalable

伺 ト イヨト イヨト

sampling methods variational methods references

variational bayes

- iterative coordinate ascent algorithm provides controlled analytic approxmations to posterior and evidence
- approximate posterior $q(\Theta)$ minimizes kullback-leibler distance to true posterior
- resulting deterministic algorithm is often fast and scalable
- complexity of approximation often limited (to, e.g., mean-field theory, assuming weak interaction between unknowns)
- iterative algorithm requires restarts, no guarantees on quality of approximation

- 4 同 ト 4 ヨ ト 4 ヨ ト

sampling methods variational methods references

example: a bayesian approach to network modularity

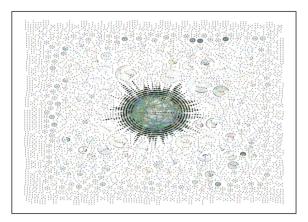
APS Meetings	2008 APS March Meeting Monday–Friday, March 10–14, 2008; New Orleans, Louisiana	
MVC 🔜	Session P39: Applications of Complex Networks	
Login	Sponsoring Units: GSNP Chair: Narayan Menon, University of Massachusetts, Amherst	
Create Account	Morial Convention Center - 231	
Meeting Home	Wednesday, March 12, 2008	P39.00001: Effects of quenched randomness on predator-prey interactions in a stochastic Lotka-Volterra lattice model
APS Home	8:00AM - 8:12AM	Uwe C. Tauber , Ulrich Dobramysl
Meeting Announcement		Preview Abstract
Invited Speakers	Wednesday, March 12, 2008	P39.00002: Dynamical Clustering in Reaction-Dispersal Processes on Complex Networks
Author Index	8:12AM - 8:24AM	Vincent David , Marc Timme , Theo Geisel , Dirk Brockmann
Session Index		Preview Abstract
Epitome	Wednesday, March 12, 2008	P39.00003: Fluctuations and Food-web Structures in Individual- based Models of Biological Coevolution
Session Chairs	8:24AM - 8:36AM	Per Ame Rikvold , Volkan Sevim
Word Search		Preview Abstract
Affiliation Search	Wednesday, March 12, 2008	P39.00004: Metabolic disease network and its implication for
Using the Scheduler	8:36AM - 8:48AM	<u>disease comorbidity</u> Deok-Sun Lee , Zoltan Oltvai , Nicholas Christakis , Albert-Laszlo Barabasi
BAPS PDFs		Preview Abstract
	Wednesday, March 12, 2008 8:48AM - 9:00AM	P39.00005: The Human Phenotypic Disease Network Cesar Hidaigo, Nicholas Blumm, Albert-Laszlo Barabasi, Nicholas Christakis
		Preview Abstract

A B M A B M

variational methods references

example: a bayesian approach to network modularity

nodes: authors, edges: co-authored papers

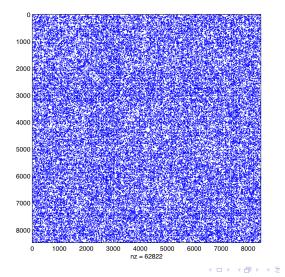


can we infer (community) structure in the giant component?

jake hofman bayesian inference: principles and practice

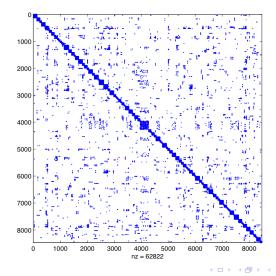
sampling methods variational methods references

example: a bayesian approach to network modularity



sampling methods variational methods references

example: a bayesian approach to network modularity

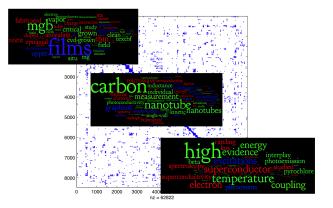


jake hofman bayesian inference: principles and practice

sampling methods variational methods references

example: a bayesian approach to network modularity

inferred topological communities correspond to sub-disciplines



sampling methods variational methods references

outline

- principles (what we'd like to do)
 - background: joint, marginal, and conditional probabilities
 - bayes' theorem: inverting conditional probabilities
 - bayesian probability: unknowns as random variables
 - bayesian inference: bayesian probability + bayes' theorem

2 practice (what we're able to do)

- monte carlo methods: representative samples
- variational methods: bound optimization

references

□ > < = > <

sampling methods variational methods references

- "information theory, inference, and learning algorithms", mackay (2003)
- "pattern recognition and machine learning", bishop (2006)
- "bayesian data analysis", gelman, et. al. (2003)
- "probabilistic inference using markov chain monte carlo methods", neal (1993)
- "graphical models, exponential families, and variational inference", wainwright & jordan (2006)
- "probability theory: the logic of science", jaynes (2003)
- "what is bayes' theorem ...", wiggins (2006)
- bayesian inference view on cran
- variational-bayes.org
- variational bayesian inference for network modularity

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト ・