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@ would like models that:
e provide predictive and explanatory power
e are complex enough to describe observed phenomena
e are simple enough to generalize to future observations
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e provide predictive and explanatory power
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@ claim: bayesian inference provides a systematic framework to
infer such models from observed data
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motivation

@ principles behind bayesian interpretation of probability and
bayesian inference are well established (bayes, laplace, etc.,
18th century)

@ recent advances in mathematical techniques and
computational resources have enabled successful applications
of these principles to real-world problems
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principles b: ' theorem
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an inference

@ rprinciples (what we'd like to do)
@ background: joint, marginal, and conditional probabilities
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background
principles bayes' theorem

b: n probability

o} n inference

joint, marginal, and conditional probabilities

joint distribution

pxy (X = x,Y = y): probability X =x and Y =y

conditional distribution

Px|y (X = x|Y = y): probability X = x given Y =y

marginal distribution

px (X): probability X = x (regardless of Y')

jake hofman bayesian inference: principles and practice



background
principles bayes' theorem

bayesian probability

bayesian inference

sum and product rules

sum rule

sum out settings of irrelevant variables:

p(x)= Y p(xy) (1)

y€EQy

product rule

the joint as the product of the conditional and marginal:

p(x,y) = pxly)p(y) (2)
= plyl)p(x) (3)
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an inference

@ rprinciples (what we'd like to do)

@ bayes’ theorem: inverting conditional probabilities
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inverting conditional probabilities

equate far right- and left-hand sides of product rule

py[x)p(x) =p(x,y)=p(xly)p(y) (4)

and divide:

bayes’ theorem (bayes and price 1763)

the probability of Y given X from the probability of X given Y:

p(xly)p(y) (5)

p(ylx) » (%)

where p(x) = _ cq, P(x|y) p(y) is the normalization constant
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example: diagnoses a la bayes

@ population 10,000
@ 1% has (rare) disease
o test is 99% (relatively) effective, i.e.

o given a patient is sick, 99% test positive
o given a patient is healthy, 99% test negative
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example: diagnoses a la bayes

@ population 10,000
@ 1% has (rare) disease
o test is 99% (relatively) effective, i.e.

e given a patient is sick, 99% test positive
e given a patient is healthy, 99% test negative

@ given positive test, what is probability the patient is sick??

follows wiggins (2006)
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background
principles bayes’ theorem

ba n probability

bayesian inference

example: diagnoses a la bayes

sick population healthy population
(100 ppl) (9900 ppl)

E>

99%
(99 ppl'test +)

D7
(9801 ppl test -)

@ 99 sick patients test positive, 99 healthy patients test positive
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background
principles bayes’ theorem

ba n probability

bayesian inference

example: diagnoses a la bayes

sick population healthy population
(100 ppl) (9900 ppl)

E>

99%
(99 ppl'test +)

D7
(9801 ppl test -)

@ 99 sick patients test positive, 99 healthy patients test positive
@ given positive test, 50% probability that patient is sick
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background
principles bayes’ theorem

b: n probability

bayesian inference

example: diagnoses a la bayes

@ know probability of testing positive/negative given
sick/healthy

@ use bayes’ theorem to “invert” to probability of sick/healthy
given positive/negative test

99/100 1/100
( |sick) p(sick) 99 1
. p(test + |sick) p(sic
k|test = = —_Z (6
p(sick|test +) p (test +) 198 2 (6)
N—_——

198/1002
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principles
probability
bayesian inference

example: diagnoses a la bayes

@ know probability of testing positive/negative given
sick/healthy

@ use bayes’ theorem to “invert” to probability of sick/healthy
given positive/negative test

99/100 1/100

( |sick) p(sick) 99 1

. p(test + |sick) p(sic

k|test = = —_Z (6

p(sick|test +) p (test +) 198 2 (6)
N—_——

198/1002

@ most “work” in calculating denominator (normalization)
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bayesian probability
bayesian inference

@ rprinciples (what we'd like to do)

@ bayesian probability: unknowns as random variables
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bayesian inference

interpretations of probabilities
(just enough philosophy)

o frequentists: limit of relative frequency of events for large
number of trials

@ bayesians: measure of a state of knowledge, quantifying
degrees of belief (jaynes 2003)
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bayesian inference

interpretations of probabilities
(just enough philosophy)

o frequentists: limit of relative frequency of events for large
number of trials

@ bayesians: measure of a state of knowledge, quantifying
degrees of belief (jaynes 2003)

@ key difference: bayesians permit assignment of probabilities to
unknown /unobservable hypotheses (frequentists do not)
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bayesian inference

interpretations of probabilities
(just enough philosophy)

@ e.g., inferring model parameters © from observed data D:

o frequentist approach: calculate parameter setting that
maximizes likelihood of data (point estimate),

© = argmax p(D|O) (7)
o

e bayesian approach: calculate distribution over parameter
settings given data,

p(©ID) = 7 (8)
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@ rprinciples (what we'd like to do)

@ bayesian inference: bayesian probability + bayes' theorem
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E n probability
bayesian inference

bayesian probability 4+ bayes’ theorem

@ bayesian inference:

e treat unknown quantities as random variables
e use bayes’ theorem to systematically update prior knowledge in
the presence of observed data

likelihood prior

posterior ’(—'25@,-(5)
—= p p
eD)="—F"——+" 9
pein) = 2= (9)
id
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example: coin flipping

@ observe independent coin flips (bernoulli trials)

@ infer distribution over coin bias
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example: coin flipping

prior p(©) over coin bias before observing flips

prior over coin faimess
=22
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bayesian inference

example: coin flipping

observe flips: HTHHHTTHHHH
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example: coin flipping

update posterior p(©|D) using bayes' theorem

posterior over coin faimess
«=10,3=5

35 T T T T T T T T T

25

P(BID)

05

jake hofman bayesian inference: principles and practice



principles

k
k
L
b.

example: coin flipping

observe flips: HHHHHHHHHHHHTHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHH
HHHHHHTHHHHHHHHHHHHHHHH
HHHHHHHHHHHHHHHHHHHHHHH HHHHHHHHT
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example: coin flipping

update posterior p(©|D) using bayes' theorem

posterior over coin faimess
a=100,[}=

P(6ID)
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quantities of interest

@ bayesian inference maintains full posterior distributions over
unknowns

@ many quantities of interest require expectations under these
posteriors, e.g. posterior mean and predictive distribution:

&~ Exorm) 6] = [d© © p(@ID) (10)

p(xID) = Exorr) [ (x10.D)] = [d® p(x/0. D) p(OID)
a1
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quantities of interest

@ bayesian inference maintains full posterior distributions over
unknowns

@ many quantities of interest require expectations under these
posteriors, e.g. posterior mean and predictive distribution:

&~ Exorm) 6] = [d© © p(@ID) (10)

p(xID) = Exorr) [ (x10.D)] = [d® p(x/0. D) p(OID)
a1

@ often can’t compute posterior (normalization), let alone
expectations with respect to it — approximation methods
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© practice (what we're able to do)
@ monte carlo methods: representative samples
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sampling methods

practice nal methods

representative samples

@ general approach: approximate intractable expectations via
sum over representative samples?

O=Eplo(l = [&x o) pl)  (12)

arbitrary function target density

2follows mackay (2003), including stolen images

jake hofman bayesian inference: principles and practice



sampling methods
variational methods

ractice 3
p references

representative samples

@ general approach: approximate intractable expectations via
sum over representative samples?

O=Eplo(l = [&x o) pl)  (12)

arbitrary function target density

U
1k
o= ;W(”) (13)

2follows mackay (2003), including stolen images
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representative samples

@ general approach: approximate intractable expectations via
sum over representative samples?

O=Eplo(l = [&x o) pl)  (12)

arbitrary function target density

U
1k
o=~ > o(x) (13)

@ shifts problem to finding “good” samples

2follows mackay (2003), including stolen images
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representative samples

o further complication: in general we can only evaluate the
target density to within a multiplicative (normalization)
constant, i.e.

p(x) = (14)

and p*(x(")) can be evaluated with Z unknown
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sampling methods

@ monte carlo methods @ markov chain monte carlo
o uniform sampling (memc) methods
e importance sampling e metropolis-hastings
o rejection sampling e gibbs sampling
] o ...
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uniform sampling

@ sample uniformly from state space of all x values
e evaluate non-normalized density p*(x(")) at each x(")
@ approximate normalization constant as

R
R=>_p(x") (15)
r=1

@ estimate expectation as

=Y o) 20T (16)
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uniform sampling

@ sample uniformly from state space of all x values
e evaluate non-normalized density p*(x(")) at each x(")
@ approximate normalization constant as

R
R=>_p(x") (15)
r=1

@ estimate expectation as

=3 o) P ) (16)

r=1 R

@ requires prohibitively large number of samples in high
dimensions with concentrated density
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importance sampling

e modify uniform sampling by introducing a sampler density
g(x) = T
2q
@ choose g(x) simple enough that g*(x) can be sampled from,
with hope that g*(x) is a reasonable approximation to p*(x)
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importance sampling

@ adjust estimator by weighting “importance” of each sample

a\) 25:1 Wr¢(X(r))

B 2R Wr )
where ( ())
p* x(r
) "
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practice nal methods

importance sampling

@ adjust estimator by weighting “importance” of each sample

a\) 25:1 Wr¢(X(r))

B 2R Wr )
where ( ())
p* x(r
) o

e difficult to choose “good” g*(x) as well as estimate reliability
of estimator
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rejection sampling

@ similar to importance sampling, but proposal density strictly
bounds target density, i.e.

cq”(x) > p*(x), (19)

for some known value ¢ and all x

N
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rejection sampling

@ generate sample x from g*(x)

@ generate uniformly random number u from [0, cg*(x)]
e add x to set {x(N} if p* (x) > u

o estimate expectation as ® = LS R o)
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rejection sampling

@ generate sample x from g*(x)

@ generate uniformly random number u from [0, cg*(x)]
e add x to set {x(N} if p* (x) > u

o estimate expectation as ® = LS R o)

@ c often prohibitively large for poor choice of g*(x) or high
dimensions
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metropolis-hastings

@ use a local proposal density g(x’; x(*)), depending on current
state x(t)

Q(m, x(l))

) x

@ construct markov chain through state space, converging to
target density

@ note: proposal density needn't closely approximate target
density
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metropolis-hastings

@ at time t, generate tenative state x’ from g(x’; x(t))

@ evaluate ) .
5= PPY) a(xY x) (20)
() q(x'x()
o if a > 1, accept the new state; else accept the new state with
probability a

e if new state is rejected, set x(tT1) = x(t)
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practice ion xI methods

metropolis-hastings

e at time t, generate tenative state x’ from g(x’; x(t))

@ evaluate

_ () q(x1); )

—pr(X) q(xx®)

o if a > 1, accept the new state; else accept the new state with
probability a

(20)

e if new state is rejected, set x(tT1) = x(t)

o effective for high dimensional problems, but difficult to assess
“convergence” of markov chain3

3see neal (1993)
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gibbs sampling

@ metropolis method where proposal density is chosen as
conditional distribution, i.e.

(i 49) = p (ol {x{ 1) (21)

@ useful when joint density factorizes, as in sparse graphical
model*

*see wainwright & jordan 2008
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practice onal methods

gibbs sampling

@ metropolis method where proposal density is chosen as
conditional distribution, i.e.

(i 49) = p (ol {x{ 1) (21)

@ useful when joint density factorizes, as in sparse graphical
model*

@ similar difficulties to metropolis, but no concerns about
adjustable parameters

*see wainwright & jordan 2008
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© practice (what we're able to do)

@ variational methods: bound optimization
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bound optimization

@ general approach: replace integration with optimization

@ construct auxiliary function upper-bounded by log-evidence,
maximize auxiliary function

L z _ L
gold_guew

®image from bishop (2006)
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variational bayes

@ bound log of expected value by expected value of log using
jensen’s inequality®:

—np(D) = —ln /de p(DI@)p(©)

- —In/d@ W(](@)

- [0 1n [ D|@e)))( )]q(@)

e for sufficiently simple (i.e. factorized) approximating
distribution g(©), right-hand side can be easily evaluated and
optimized

IN

®image from feynman (1972)
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variational bayes

@ iterative coordinate ascent algorithm provides controlled
analytic approxmations to posterior and evidence

@ approximate posterior g(©) minimizes kullback-leibler
distance to true posterior

@ resulting deterministic algorithm is often fast and scalable
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variational bayes

@ iterative coordinate ascent algorithm provides controlled
analytic approxmations to posterior and evidence

@ approximate posterior g(©) minimizes kullback-leibler
distance to true posterior

@ resulting deterministic algorithm is often fast and scalable

@ complexity of approximation often limited (to, e.g., mean-field
theory, assuming weak interaction between unknowns)

@ iterative algorithm requires restarts, no guarantees on quality
of approximation
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example: a bayesian approach to network modularity

APS 2008 APS March Meeting
n Monday-Friday, March 10-14, 2008; New Orleans, Louisiana
Meetin,
ion P39: Applications of Compl

Sponsoring Units: GSNP
Chair: Narayan Menon, University of Massachusetts, Amherst

Create Account Morial Convention Center - 231
Meeting Home Wednesday, March 12, P39.00001: Effects of quenched randomness on predator-prey
2 interactions in a stochastic Lotka-Volterra lattice model
ABCHone! 8:00AM - 8:12AM Uwe C. Tauber, Ulrich Dobramys!
Meoting
Announcement Preview Abstract
- o ‘Wednesday, March 12, P39.00002: Dynamical Clustering in Reaction-Dispersal
e 2008 Processes on Complex Networks
Author Index 8:12AM - 8:24AM Vincent David , Marc Timme , Theo Geisel , Dirk Brockmann
C s Preview Abstract
Epitome Wednesday, March 12, P39.00003: Fluctuations and Food-web Structure: Individual-
2 based Models of Biological Coevolution
Sesslon Chairs 8:24AM - 8:36AM Per Ame Rikvold , Volkan Sevim
Word Saareh Preview Abstract
Affilation Search ‘Wednesday, March 12, P39.00004: Metabolic disease network and its implication for
2 disease comorbidity
Ped), 8:36AM - 8:48AM Deok-8un Lee , Zoltan Oltvai , Nicholas Christakis , Albert-Laszlo Barabasi
BAPS PDFs Preview Abstract

‘Wednesday, March 12, P39.00005: The Human Phenotypic Disease Network
2008 Cesar Hidalgo , Nicholas Blumm , Albert-Laszlo Barabasi , Nicholas Christakis
8:48AM - 9:00AM

Preview Abstract

jake hofman




sampling methods
variational methods
references

practice

example: a bayesian approach to network modularity

nodes: authors, edges: co-authored papers

can we infer (community) structure in the giant component?

jake hofman bayesian inference: principles and practice



sampling methods
variational methods

ractice 3
p references

example: a bayesian approach to network modularity

% !
0 1000 2000 3000 4000 5000 6000 7000 8000
nz = 62822
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practice variational methods

example: a bayesian

3000 4000 5000
nz = 62822
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example: a bayesian approach to network modularity

inferred topological communities correspond to sub-disciplines

nu asurement

nanotub

1 kinet ﬂ"mnt e .

0 1000 2000 3000
nz = 62822
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© practice (what we're able to do)

@ references
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@ ‘“information theory, inference, and learning algorithms”,
mackay (2003)

@ ‘“pattern recognition and machine learning”, bishop (2006)
e "bayesian data analysis’, gelman, et. al. (2003)

@ ‘“probabilistic inference using markov chain monte carlo
methods”, neal (1993)

@ ‘“graphical models, exponential families, and variational
inference”, wainwright & jordan (2006)

“probability theory: the logic of science”, jaynes (2003)
“what is bayes’ theorem ...", wiggins (2006)
bayesian inference view on cran

variational-bayes.org

variational bayesian inference for network modularity
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