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motivation

would like models that:
provide predictive and explanatory power
are complex enough to describe observed phenomena
are simple enough to generalize to future observations

claim: bayesian inference provides a systematic framework to
infer such models from observed data
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motivation

principles behind bayesian interpretation of probability and
bayesian inference are well established (bayes, laplace, etc.,
18th century)

+

recent advances in mathematical techniques and
computational resources have enabled successful applications
of these principles to real-world problems
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motivation: a bayesian approach to network modularity
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outline

1 principles (what we’d like to do)
background: joint, marginal, and conditional probabilities
bayes’ theorem: inverting conditional probabilities
bayesian probability: unknowns as random variables
bayesian inference: bayesian probability + bayes’ theorem

2 practice (what we’re able to do)
monte carlo methods: representative samples
variational methods: bound optimization
references
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joint, marginal, and conditional probabilities

joint distribution

pXY (X = x ,Y = y): probability X = x and Y = y

conditional distribution

pX |Y (X = x |Y = y): probability X = x given Y = y

marginal distribution

pX (X ): probability X = x (regardless of Y )
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sum and product rules

sum rule

sum out settings of irrelevant variables:

p (x) =
∑

y∈ΩY

p (x , y) (1)

product rule

the joint as the product of the conditional and marginal:

p (x , y) = p (x |y) p (y) (2)

= p (y |x) p (x) (3)
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inverting conditional probabilities

equate far right- and left-hand sides of product rule

p (y |x) p (x) = p (x , y) = p (x |y) p (y) (4)

and divide:

bayes’ theorem (bayes and price 1763)

the probability of Y given X from the probability of X given Y :

p (y |x) =
p (x |y) p (y)

p (x)
(5)

where p (x) =
∑

y∈ΩY
p (x |y) p (y) is the normalization constant
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example: diagnoses a la bayes

population 10,000

1% has (rare) disease

test is 99% (relatively) effective, i.e.

given a patient is sick, 99% test positive
given a patient is healthy, 99% test negative

given positive test, what is probability the patient is sick?
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example: diagnoses a la bayes

population 10,000

1% has (rare) disease

test is 99% (relatively) effective, i.e.

given a patient is sick, 99% test positive
given a patient is healthy, 99% test negative

given positive test, what is probability the patient is sick?1

1follows wiggins (2006)
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example: diagnoses a la bayes

1%

99%

99%

1%

(99 ppl test +)

(1 ppl test -)

(9801 ppl test -)

(99 ppl test +)

sick  population
(100 ppl)

healthy  population
(9900 ppl)

99 sick patients test positive, 99 healthy patients test positive

given positive test, 50% probability that patient is sick
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example: diagnoses a la bayes

know probability of testing positive/negative given
sick/healthy

use bayes’ theorem to “invert” to probability of sick/healthy
given positive/negative test

p (sick|test +) =

99/100︷ ︸︸ ︷
p (test + |sick)

1/100︷ ︸︸ ︷
p (sick)

p (test +)︸ ︷︷ ︸
198/1002

=
99

198
=

1

2
(6)

most “work” in calculating denominator (normalization)
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interpretations of probabilities
(just enough philosophy)

frequentists: limit of relative frequency of events for large
number of trials

bayesians: measure of a state of knowledge, quantifying
degrees of belief (jaynes 2003)

key difference: bayesians permit assignment of probabilities to
unknown/unobservable hypotheses (frequentists do not)
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interpretations of probabilities
(just enough philosophy)

e.g., inferring model parameters Θ from observed data D:

frequentist approach: calculate parameter setting that
maximizes likelihood of data (point estimate),

Θ̂ = argmax
Θ

p(D|Θ) (7)

bayesian approach: calculate distribution over parameter
settings given data,

p(Θ|D) = ? (8)
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bayesian probability + bayes’ theorem

bayesian inference:

treat unknown quantities as random variables
use bayes’ theorem to systematically update prior knowledge in
the presence of observed data

posterior︷ ︸︸ ︷
p(Θ|D) =

likelihood︷ ︸︸ ︷
p(D|Θ)

prior︷ ︸︸ ︷
p(Θ)

p(D)︸ ︷︷ ︸
evidence

(9)
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example: coin flipping

observe independent coin flips (bernoulli trials)

infer distribution over coin bias
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example: coin flipping

prior p(Θ) over coin bias before observing flips
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example: coin flipping

observe flips: HTHHHTTHHHH
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update posterior p(Θ|D) using bayes’ theorem
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quantities of interest

bayesian inference maintains full posterior distributions over
unknowns

many quantities of interest require expectations under these
posteriors, e.g. posterior mean and predictive distribution:

Θ̄ = Ep(Θ|D) [Θ] =

∫
dΘ Θ p(Θ|D) (10)

p (x |D) = Ep(Θ|D) [p (x |Θ,D)] =

∫
dΘ p (x |Θ,D) p(Θ|D)

(11)

often can’t compute posterior (normalization), let alone
expectations with respect to it → approximation methods
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outline

1 principles (what we’d like to do)
background: joint, marginal, and conditional probabilities
bayes’ theorem: inverting conditional probabilities
bayesian probability: unknowns as random variables
bayesian inference: bayesian probability + bayes’ theorem

2 practice (what we’re able to do)
monte carlo methods: representative samples
variational methods: bound optimization
references
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representative samples

general approach: approximate intractable expectations via
sum over representative samples2

Φ = Ep(x) [φ(x)] =

∫
dx φ(x)︸︷︷︸

arbitrary function

p(x)︸︷︷︸
target density

(12)

⇓

Φ̂ =
1

R

R∑
r=1

φ(x (r)) (13)

shifts problem to finding “good” samples

2follows mackay (2003), including stolen images
jake hofman bayesian inference: principles and practice
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representative samples

further complication: in general we can only evaluate the
target density to within a multiplicative (normalization)
constant, i.e.

p(x) =
p∗(x)

Z
(14)

and p∗(x (r)) can be evaluated with Z unknown

jake hofman bayesian inference: principles and practice



principles
practice

sampling methods
variational methods
references

sampling methods

monte carlo methods

uniform sampling
importance sampling
rejection sampling
. . .

markov chain monte carlo
(mcmc) methods

metropolis-hastings
gibbs sampling
. . .
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uniform sampling

sample uniformly from state space of all x values

evaluate non-normalized density p∗(x (r)) at each x (r)

approximate normalization constant as

ZR =
R∑

r=1

p∗(x (r)) (15)

estimate expectation as

Φ̂ =
R∑

r=1

φ(x (r))
p∗(x (r))

ZR
(16)

requires prohibitively large number of samples in high
dimensions with concentrated density
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importance sampling

modify uniform sampling by introducing a sampler density
q(x) = q∗(x)

ZQ

choose q(x) simple enough that q∗(x) can be sampled from,
with hope that q∗(x) is a reasonable approximation to p∗(x)

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981
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362 29 — Monte Carlo Methods

But P (x) is too complicated a function for us to be able to sample from it
directly. We now assume that we have a simpler density Q(x) from which we
can generate samples and which we can evaluate to within a multiplicative
constant (that is, we can evaluate Q∗(x), where Q(x) = Q∗(x)/ZQ). An
example of the functions P ∗, Q∗ and φ is shown in figure 29.5. We call Q the

x

P ∗(x) Q∗(x)
φ(x)

Figure 29.5. Functions involved in
importance sampling. We wish to
estimate the expectation of φ(x)
under P (x) ∝ P ∗(x). We can
generate samples from the simpler
distribution Q(x) ∝ Q∗(x). We
can evaluate Q∗ and P ∗ at any
point.

sampler density.
In importance sampling, we generate R samples {x(r)}R

r=1 from Q(x). If
these points were samples from P (x) then we could estimate Φ by equa-
tion (29.6). But when we generate samples from Q, values of x where Q(x) is
greater than P (x) will be over-represented in this estimator, and points where
Q(x) is less than P (x) will be under-represented. To take into account the
fact that we have sampled from the wrong distribution, we introduce weights

wr ≡
P ∗(x(r))
Q∗(x(r))

(29.21)

which we use to adjust the ‘importance’ of each point in our estimator thus:

Φ̂ ≡
∑

r wrφ(x(r))∑
r wr

. (29.22)

" Exercise 29.1.[2, p.384] Prove that, if Q(x) is non-zero for all x where P (x) is
non-zero, the estimator Φ̂ converges to Φ, the mean value of φ(x), as R
increases. What is the variance of this estimator, asymptotically? Hint:
consider the statistics of the numerator and the denominator separately.
Is the estimator Φ̂ an unbiased estimator for small R?

A practical difficulty with importance sampling is that it is hard to estimate
how reliable the estimator Φ̂ is. The variance of the estimator is unknown
beforehand, because it depends on an integral over x of a function involving
P ∗(x). And the variance of Φ̂ is hard to estimate, because the empirical
variances of the quantities wr and wrφ(x(r)) are not necessarily a good guide
to the true variances of the numerator and denominator in equation (29.22).
If the proposal density Q(x) is small in a region where |φ(x)P ∗(x)| is large
then it is quite possible, even after many points x(r) have been generated, that
none of them will have fallen in that region. In this case the estimate of Φ
would be drastically wrong, and there would be no indication in the empirical
variance that the true variance of the estimator Φ̂ is large.

(a)
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(b)
-7.2

-7

-6.8
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Figure 29.6. Importance sampling
in action: (a) using a Gaussian
sampler density; (b) using a
Cauchy sampler density. Vertical
axis shows the estimate Φ̂. The
horizontal line indicates the true
value of Φ. Horizontal axis shows
number of samples on a log scale.

Cautionary illustration of importance sampling

In a toy problem related to the modelling of amino acid probability distribu-
tions with a one-dimensional variable x, I evaluated a quantity of interest us-
ing importance sampling. The results using a Gaussian sampler and a Cauchy
sampler are shown in figure 29.6. The horizontal axis shows the number of
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importance sampling

adjust estimator by weighting “importance” of each sample

Φ̂ =

∑R
r=1 wrφ(x (r))∑

R wr
(17)

where

wr =
p∗(x (r))

q∗(x (r))
(18)

difficult to choose “good” q∗(x) as well as estimate reliability
of estimator
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rejection sampling

similar to importance sampling, but proposal density strictly
bounds target density, i.e.

cq∗(x) > p∗(x), (19)

for some known value c and all x
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(a)

x

P ∗(x)
cQ∗(x)

(b)

x

u

x

P ∗(x)
cQ∗(x) Figure 29.8. Rejection sampling.

(a) The functions involved in
rejection sampling. We desire
samples from P (x) ∝ P ∗(x). We
are able to draw samples from
Q(x) ∝ Q∗(x), and we know a
value c such that c Q∗(x) > P ∗(x)
for all x. (b) A point (x, u) is
generated at random in the lightly
shaded area under the curve
c Q∗(x). If this point also lies
below P ∗(x) then it is accepted.

So if we draw a hundred samples, what will the typical range of weights be?
We can roughly estimate the ratio of the largest weight to the median weight
by doubling the standard deviation in equation (29.27). The largest weight
and the median weight will typically be in the ratio:

wmax
r

wmed
r

= exp
(√

2N
)

. (29.28)

In N = 1000 dimensions therefore, the largest weight after one hundred sam-
ples is likely to be roughly 1019 times greater than the median weight. Thus an
importance sampling estimate for a high-dimensional problem will very likely
be utterly dominated by a few samples with huge weights.

In conclusion, importance sampling in high dimensions often suffers from
two difficulties. First, we need to obtain samples that lie in the typical set of P ,
and this may take a long time unless Q is a good approximation to P . Second,
even if we obtain samples in the typical set, the weights associated with those
samples are likely to vary by large factors, because the probabilities of points
in a typical set, although similar to each other, still differ by factors of order
exp(

√
N), so the weights will too, unless Q is a near-perfect approximation to

P .

29.3 Rejection sampling

We assume again a one-dimensional density P (x) = P ∗(x)/Z that is too com-
plicated a function for us to be able to sample from it directly. We assume
that we have a simpler proposal density Q(x) which we can evaluate (within a
multiplicative factor ZQ, as before), and from which we can generate samples.
We further assume that we know the value of a constant c such that

cQ∗(x) > P ∗(x), for all x. (29.29)

A schematic picture of the two functions is shown in figure 29.8a.
We generate two random numbers. The first, x, is generated from the

proposal density Q(x). We then evaluate cQ∗(x) and generate a uniformly
distributed random variable u from the interval [0, cQ∗(x)]. These two random
numbers can be viewed as selecting a point in the two-dimensional plane as
shown in figure 29.8b.

We now evaluate P ∗(x) and accept or reject the sample x by comparing the
value of u with the value of P ∗(x). If u > P ∗(x) then x is rejected; otherwise
it is accepted, which means that we add x to our set of samples {x(r)}. The
value of u is discarded.

Why does this procedure generate samples from P (x)? The proposed point
(x, u) comes with uniform probability from the lightly shaded area underneath
the curve cQ∗(x) as shown in figure 29.8b. The rejection rule rejects all the
points that lie above the curve P ∗(x). So the points (x, u) that are accepted
are uniformly distributed in the heavily shaded area under P ∗(x). This implies
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rejection sampling

generate sample x from q∗(x)

generate uniformly random number u from [0, cq∗(x)]

add x to set {x (r)} if p∗(x) > u

estimate expectation as Φ̂ = 1
R

∑R
r=1 φ(x (r))
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A schematic picture of the two functions is shown in figure 29.8a.
We generate two random numbers. The first, x, is generated from the

proposal density Q(x). We then evaluate cQ∗(x) and generate a uniformly
distributed random variable u from the interval [0, cQ∗(x)]. These two random
numbers can be viewed as selecting a point in the two-dimensional plane as
shown in figure 29.8b.

We now evaluate P ∗(x) and accept or reject the sample x by comparing the
value of u with the value of P ∗(x). If u > P ∗(x) then x is rejected; otherwise
it is accepted, which means that we add x to our set of samples {x(r)}. The
value of u is discarded.

Why does this procedure generate samples from P (x)? The proposed point
(x, u) comes with uniform probability from the lightly shaded area underneath
the curve cQ∗(x) as shown in figure 29.8b. The rejection rule rejects all the
points that lie above the curve P ∗(x). So the points (x, u) that are accepted
are uniformly distributed in the heavily shaded area under P ∗(x). This implies

c often prohibitively large for poor choice of q∗(x) or high
dimensions
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rejection sampling

generate sample x from q∗(x)

generate uniformly random number u from [0, cq∗(x)]

add x to set {x (r)} if p∗(x) > u

estimate expectation as Φ̂ = 1
R

∑R
r=1 φ(x (r))
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(a)

x

P ∗(x)
cQ∗(x)

(b)

x

u

x

P ∗(x)
cQ∗(x) Figure 29.8. Rejection sampling.

(a) The functions involved in
rejection sampling. We desire
samples from P (x) ∝ P ∗(x). We
are able to draw samples from
Q(x) ∝ Q∗(x), and we know a
value c such that c Q∗(x) > P ∗(x)
for all x. (b) A point (x, u) is
generated at random in the lightly
shaded area under the curve
c Q∗(x). If this point also lies
below P ∗(x) then it is accepted.

So if we draw a hundred samples, what will the typical range of weights be?
We can roughly estimate the ratio of the largest weight to the median weight
by doubling the standard deviation in equation (29.27). The largest weight
and the median weight will typically be in the ratio:

wmax
r

wmed
r

= exp
(√

2N
)

. (29.28)

In N = 1000 dimensions therefore, the largest weight after one hundred sam-
ples is likely to be roughly 1019 times greater than the median weight. Thus an
importance sampling estimate for a high-dimensional problem will very likely
be utterly dominated by a few samples with huge weights.

In conclusion, importance sampling in high dimensions often suffers from
two difficulties. First, we need to obtain samples that lie in the typical set of P ,
and this may take a long time unless Q is a good approximation to P . Second,
even if we obtain samples in the typical set, the weights associated with those
samples are likely to vary by large factors, because the probabilities of points
in a typical set, although similar to each other, still differ by factors of order
exp(

√
N), so the weights will too, unless Q is a near-perfect approximation to

P .

29.3 Rejection sampling

We assume again a one-dimensional density P (x) = P ∗(x)/Z that is too com-
plicated a function for us to be able to sample from it directly. We assume
that we have a simpler proposal density Q(x) which we can evaluate (within a
multiplicative factor ZQ, as before), and from which we can generate samples.
We further assume that we know the value of a constant c such that

cQ∗(x) > P ∗(x), for all x. (29.29)

A schematic picture of the two functions is shown in figure 29.8a.
We generate two random numbers. The first, x, is generated from the

proposal density Q(x). We then evaluate cQ∗(x) and generate a uniformly
distributed random variable u from the interval [0, cQ∗(x)]. These two random
numbers can be viewed as selecting a point in the two-dimensional plane as
shown in figure 29.8b.

We now evaluate P ∗(x) and accept or reject the sample x by comparing the
value of u with the value of P ∗(x). If u > P ∗(x) then x is rejected; otherwise
it is accepted, which means that we add x to our set of samples {x(r)}. The
value of u is discarded.

Why does this procedure generate samples from P (x)? The proposed point
(x, u) comes with uniform probability from the lightly shaded area underneath
the curve cQ∗(x) as shown in figure 29.8b. The rejection rule rejects all the
points that lie above the curve P ∗(x). So the points (x, u) that are accepted
are uniformly distributed in the heavily shaded area under P ∗(x). This implies

c often prohibitively large for poor choice of q∗(x) or high
dimensions
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metropolis-hastings

use a local proposal density q(x ′; x (t)), depending on current
state x (t)
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29.4: The Metropolis–Hastings method 365

that the probability density of the x-coordinates of the accepted points must
be proportional to P ∗(x), so the samples must be independent samples from
P (x).

Rejection sampling will work best if Q is a good approximation to P . If Q
is very different from P then, for cQ to exceed P everywhere, c will necessarily
have to be large and the frequency of rejection will be large.

-4 -3 -2 -1 0 1 2 3 4

P(x)
cQ(x)

Figure 29.9. A Gaussian P (x) and
a slightly broader Gaussian Q(x)
scaled up by a factor c such that
c Q(x) ≥ P (x).

Rejection sampling in many dimensions

In a high-dimensional problem it is very likely that the requirement that cQ∗

be an upper bound for P ∗ will force c to be so huge that acceptances will be
very rare indeed. Finding such a value of c may be difficult too, since in many
problems we know neither where the modes of P ∗ are located nor how high
they are.

As a case study, consider a pair of N -dimensional Gaussian distributions
with mean zero (figure 29.9). Imagine generating samples from one with stan-
dard deviation σQ and using rejection sampling to obtain samples from the
other whose standard deviation is σP . Let us assume that these two standard
deviations are close in value – say, σQ is 1% larger than σP . [σQ must be larger
than σP because if this is not the case, there is no c such that cQ exceeds P
for all x.] So, what value of c is required if the dimensionality is N = 1000?
The density of Q(x) at the origin is 1/(2πσ2

Q)N/2, so for cQ to exceed P we
need to set

c =
(2πσ2

Q)N/2

(2πσ2
P )N/2

= exp
(

N ln
σQ

σP

)
. (29.30)

With N = 1000 and σQ

σP
= 1.01, we find c = exp(10) ! 20,000. What will the

acceptance rate be for this value of c? The answer is immediate: since the
acceptance rate is the ratio of the volume under the curve P (x) to the volume
under cQ(x), the fact that P and Q are both normalized here implies that
the acceptance rate will be 1/c, for example, 1/20,000. In general, c grows
exponentially with the dimensionality N , so the acceptance rate is expected
to be exponentially small in N .

Rejection sampling, therefore, whilst a useful method for one-dimensional
problems, is not expected to be a practical technique for generating samples
from high-dimensional distributions P (x).

29.4 The Metropolis–Hastings method

Importance sampling and rejection sampling work well only if the proposal
density Q(x) is similar to P (x). In large and complex problems it is difficult
to create a single density Q(x) that has this property.

xx(1)

Q(x; x(1))

P ∗(x)

xx(2)

Q(x; x(2))

P ∗(x)

Figure 29.10. Metropolis–Hastings
method in one dimension. The
proposal distribution Q(x′; x) is
here shown as having a shape that
changes as x changes, though this
is not typical of the proposal
densities used in practice.

The Metropolis–Hastings algorithm instead makes use of a proposal den-
sity Q which depends on the current state x(t). The density Q(x′;x(t)) might
be a simple distribution such as a Gaussian centred on the current x(t). The
proposal density Q(x′;x) can be any fixed density from which we can draw
samples. In contrast to importance sampling and rejection sampling, it is not
necessary that Q(x′;x(t)) look at all similar to P (x) in order for the algorithm
to be practically useful. An example of a proposal density is shown in fig-
ure 29.10; this figure shows the density Q(x′;x(t)) for two different states x(1)

and x(2).
As before, we assume that we can evaluate P ∗(x) for any x. A tentative

new state x′ is generated from the proposal density Q(x′;x(t)). To decide

construct markov chain through state space, converging to
target density

note: proposal density needn’t closely approximate target
density
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metropolis-hastings

at time t, generate tenative state x ′ from q(x ′; x (t))

evaluate

a =
p∗(x (t))

p∗(x ′)

q(x (t); x ′)

q(x ′; x (t))
(20)

if a ≥ 1, accept the new state; else accept the new state with
probability a

if new state is rejected, set x (t+1) = x (t)

effective for high dimensional problems, but difficult to assess
“convergence” of markov chain
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metropolis-hastings

at time t, generate tenative state x ′ from q(x ′; x (t))

evaluate

a =
p∗(x (t))

p∗(x ′)

q(x (t); x ′)

q(x ′; x (t))
(20)

if a ≥ 1, accept the new state; else accept the new state with
probability a

if new state is rejected, set x (t+1) = x (t)

effective for high dimensional problems, but difficult to assess
“convergence” of markov chain3

3see neal (1993)
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gibbs sampling

metropolis method where proposal density is chosen as
conditional distribution, i.e.

q(x ′i ; x
(t)) = p

(
xi |{x

(t)
j }j 6=i

)
(21)

useful when joint density factorizes, as in sparse graphical
model4

similar difficulties to metropolis, but no concerns about
adjustable parameters

4see wainwright & jordan 2008
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gibbs sampling

metropolis method where proposal density is chosen as
conditional distribution, i.e.

q(x ′i ; x
(t)) = p

(
xi |{x

(t)
j }j 6=i

)
(21)

useful when joint density factorizes, as in sparse graphical
model4

similar difficulties to metropolis, but no concerns about
adjustable parameters

4see wainwright & jordan 2008
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outline

1 principles (what we’d like to do)
background: joint, marginal, and conditional probabilities
bayes’ theorem: inverting conditional probabilities
bayesian probability: unknowns as random variables
bayesian inference: bayesian probability + bayes’ theorem

2 practice (what we’re able to do)
monte carlo methods: representative samples
variational methods: bound optimization
references
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bound optimization

general approach: replace integration with optimization

construct auxiliary function upper-bounded by log-evidence,
maximize auxiliary function9.4. The EM Algorithm in General 453

Figure 9.14 The EM algorithm involves alter-
nately computing a lower bound
on the log likelihood for the cur-
rent parameter values and then
maximizing this bound to obtain
the new parameter values. See
the text for a full discussion.

θold θnew

L (q, θ)

ln p(X|θ)

complete data) log likelihood function whose value we wish to maximize. We start
with some initial parameter value θold, and in the first E step we evaluate the poste-
rior distribution over latent variables, which gives rise to a lower bound L(θ, θ(old))
whose value equals the log likelihood at θ(old), as shown by the blue curve. Note that
the bound makes a tangential contact with the log likelihood at θ(old), so that both
curves have the same gradient. This bound is a convex function having a uniqueExercise 9.25
maximum (for mixture components from the exponential family). In the M step, the
bound is maximized giving the value θ(new), which gives a larger value of log likeli-
hood than θ(old). The subsequent E step then constructs a bound that is tangential at
θ(new) as shown by the green curve.

For the particular case of an independent, identically distributed data set, X
will comprise N data points {xn} while Z will comprise N corresponding latent
variables {zn}, where n = 1, . . . , N . From the independence assumption, we have
p(X,Z) =

∏
n p(xn, zn) and, by marginalizing over the {zn} we have p(X) =∏

n p(xn). Using the sum and product rules, we see that the posterior probability
that is evaluated in the E step takes the form

p(Z|X, θ) =
p(X,Z|θ)∑

Z

p(X,Z|θ)
=

N∏

n=1

p(xn, zn|θ)

∑

Z

N∏

n=1

p(xn, zn|θ)

=
N∏

n=1

p(zn|xn, θ) (9.75)

and so the posterior distribution also factorizes with respect to n. In the case of
the Gaussian mixture model this simply says that the responsibility that each of the
mixture components takes for a particular data point xn depends only on the value
of xn and on the parameters θ of the mixture components, not on the values of the
other data points.

We have seen that both the E and the M steps of the EM algorithm are increas-
ing the value of a well-defined bound on the log likelihood function and that the

5

5image from bishop (2006)
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variational bayes

bound log of expected value by expected value of log using
jensen’s inequality6:

− ln p(D) = − ln

∫
dΘ p(D|Θ)p(Θ)

= − ln

∫
dΘ

p(D|Θ)p(Θ)

q(Θ)
q(Θ)

≤ −
∫

dΘ ln

[
p(D|Θ)p(Θ)

q(Θ)

]
q(Θ)

for sufficiently simple (i.e. factorized) approximating
distribution q(Θ), right-hand side can be easily evaluated and
optimized

6image from feynman (1972)
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variational bayes

iterative coordinate ascent algorithm provides controlled
analytic approxmations to posterior and evidence

approximate posterior q(Θ) minimizes kullback-leibler
distance to true posterior

resulting deterministic algorithm is often fast and scalable

complexity of approximation often limited (to, e.g., mean-field
theory, assuming weak interaction between unknowns)

iterative algorithm requires restarts, no guarantees on quality
of approximation
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variational bayes

iterative coordinate ascent algorithm provides controlled
analytic approxmations to posterior and evidence

approximate posterior q(Θ) minimizes kullback-leibler
distance to true posterior

resulting deterministic algorithm is often fast and scalable

complexity of approximation often limited (to, e.g., mean-field
theory, assuming weak interaction between unknowns)

iterative algorithm requires restarts, no guarantees on quality
of approximation
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example: a bayesian approach to network modularity
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example: a bayesian approach to network modularity

nodes: authors, edges: co-authored papers

can we infer (community) structure in the giant component?
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example: a bayesian approach to network modularity

jake hofman bayesian inference: principles and practice



principles
practice

sampling methods
variational methods
references

example: a bayesian approach to network modularity
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example: a bayesian approach to network modularity

inferred topological communities correspond to sub-disciplines
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outline

1 principles (what we’d like to do)
background: joint, marginal, and conditional probabilities
bayes’ theorem: inverting conditional probabilities
bayesian probability: unknowns as random variables
bayesian inference: bayesian probability + bayes’ theorem

2 practice (what we’re able to do)
monte carlo methods: representative samples
variational methods: bound optimization
references
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“information theory, inference, and learning algorithms”,
mackay (2003)

“pattern recognition and machine learning”, bishop (2006)

“bayesian data analysis”, gelman, et. al. (2003)

“probabilistic inference using markov chain monte carlo
methods”, neal (1993)

“graphical models, exponential families, and variational
inference”, wainwright & jordan (2006)

“probability theory: the logic of science”, jaynes (2003)

“what is bayes’ theorem ...”, wiggins (2006)

bayesian inference view on cran

variational-bayes.org

variational bayesian inference for network modularity
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