1 the gaussian approximation to the binomial

we start with the probability of ending up j steps from the origin when taking a total of N steps, given by

P = Mo 1)

taking the logarithm of both sides, we have
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now we apply stirling’s approximation, which reads
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for large N. this gives
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the second term in each of the square brackets cancel each other. regrouping the first term in each of the

square brackets together,
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looking at only the terms in square brackets and rearranging a bit,
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now we use the taylor expansion In(1 £+ z) &~ +z for x <« 1 and work to “second order in %”:
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simplifying Eqn. (4) a bit and plugging the above in gives
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now we approximate the second term in the same manner as before:
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we exponentiate to get P; back:
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to get P(z) = %, we use j = /L and L = /2Dt/N:
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P(z) = % — exp(

which is, at last, a gaussian distribution.

lesson: the large-NV limit of a “fair” binomial distribution is a gaussian distribution.
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