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Personalized recommendations
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http://netflixprize.com
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http://netflixprize.com/rules
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http://netflixprize.com/faq
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Netflix prize: results

http://en.wikipedia.org/wiki/Netflix Prize
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Netflix prize: results

See [TJB09] and [Kor09] for more gory details.
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Recommendation systems

High-level approaches:

• Content-based methods
(e.g., wgenre: thrillers = +2.3, wdirector: coen brothers = +1.7)

• Collaborative methods
(e.g., “Users who liked this also liked”)
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Netflix prize: data

(userid, movieid, rating, date)
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Netflix prize: data

(movieid, year, title)
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Recommendation systems

High-level approaches:

• Content-based methods
(e.g., wgenre: thrillers = +2.3, wdirector: coen brothers = +1.7)

• Collaborative methods
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Collaborative filtering

Memory-based
(e.g., k-nearest neighbors)

Model-based
(e.g., matrix factorization)

http://research.yahoo.com/pub/2859
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Problem statement

• Given a set of past ratings Rui that user u gave item i
• Users may explicitly assign ratings, e.g., Rui ∈ [1, 5] is number

of stars for movie rating
• Or we may infer implicit ratings from user actions, e.g.

Rui = 1 if u purchased i ; otherwise Rui = ?

• Make recommendations of several forms
• Predict unseen item ratings for a particular user
• Suggest items for a particular user
• Suggest items similar to a particular item
• . . .

• Compare to natural baselines
• Guess global average for item ratings
• Suggest globally popular items
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k-nearest neighbors

Key intuition:
Take a local popularity vote amongst “similar” users
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k-nearest neighbors
User similarity

Quantify similarity as a function of users’ past ratings, e.g.

• Fraction of items u and v have in common

Suv =
|Ru ∩ Rv |
|Ru ∪ Rv |

=

∑
i RuiRvi∑

i (Rui + Rvi − RuiRvi )
(1)

Retain top-k most similar neighbors v for each user u
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k-nearest neighbors
User similarity

Quantify similarity as a function of users’ past ratings, e.g.

• Angle between rating vectors

Suv =
Ru · Rv

|Ru| |Rv |
=

∑
i RuiRvi√∑

i R
2
ui

∑
j R2

vj

(1)

Retain top-k most similar neighbors v for each user u
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k-nearest neighbors
Predicted ratings

Predict unseen ratings R̂ui as a weighted vote over u’s neighbors’
ratings for item i

R̂ui =

∑
v RviSuv∑

v Suv
(2)

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 16 / 31



k-nearest neighbors
Practical notes

We expect most users have nothing in common, so calculate
similarities as:

for each item i :
for all pairs of users u, v that have rated i :

calculate Suv (if not already calculated)
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k-nearest neighbors
Practical notes

Alternatively, we can make recommendations using an item-based
approach [LSY03]:

• Compute similarities Sij between all pairs of items

• Predict ratings with a weighted vote R̂ui =
∑

j RujSij/
∑

j Sij
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k-nearest neighbors
Practical notes

Several (relatively) simple ways to scale:

• Sample a subset of ratings for each user (by, e.g., recency)

• Use MinHash to cluster users [DDGR07]

• Distribute calculations with MapReduce
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Matrix factorization

Key intuition:
Model item attributes as belonging to a set of unobserved “topics

and user preferences across these “topics”
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Matrix factorization
Linear model

Start with a simple linear model:

R̂ui = b0︸︷︷︸
global average

+ bu︸︷︷︸
user bias

+ bi︸︷︷︸
item bias

(3)
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Matrix factorization
Linear model

For example, we might predict that a harsh critic would score a
popular movie as

R̂ui = 3.6︸︷︷︸
global average

+ −0.5︸︷︷︸
user bias

+ 0.8︸︷︷︸
item bias

(3)

= 3.9 (4)
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Matrix factorization
Low-rank approximation

Add an interaction term:

R̂ui = b0︸︷︷︸
global average

+ bu︸︷︷︸
user bias

+ bi︸︷︷︸
item bias

+ Wui︸︷︷︸
user-item interaction

(5)

where Wui = Pu · Qi =
∑

k PukQik

• Puk is user u’s preference for topic k

• Qik is item i ’s association with topic k
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Matrix factorization
Loss function

Measure quality of model fit with squared-loss:

L =
∑
(u,i)

(
R̂ui − Rui

)2
(6)

=
∑
(u,i)

([PQ]ui − Rui )
2 (7)
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Matrix factorization
Optimization

The loss is non-convex in (P,Q), so no global minimum exists

Instead we can optimize L iteratively, e.g.:

• Alternating least squares: update entire matrix P, holding Q
fixed, and vice-versa

• Stochastic gradient descent: update individual rows Pu and
Qi for each observed Rui
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Matrix factorization
Alternating least squares

L is convex in P (Q fixed), so take partials and solve linear system
for updates:

0 =
∂L
∂P

→ P̂ = RQ
[
QTQ

]−1
(8)

0 =
∂L
∂Q

→ Q̂ = RTP
[
PTP

]−1
(9)

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 23 / 31



Matrix factorization
Stochastic gradient descent

Alternatively, we can avoid inverting matrices by taking steps in
the direction of the negative gradient for each observed rating:

Pu ← Pu − η
∂L
∂Pu

= Pu +
(
Rui − R̂ui

)
Qi (10)

Qi ← Qi − η
∂L
∂Qi

= Qi +
(
Rui − R̂ui

)
Pu (11)

for some step-size η
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Matrix factorization
Practical notes

Several ways to scale:

• Distribute matrix operations with MapReduce [GHNS11]

• Parallelize stochastic gradient descent [ZWSL10]

• Expectation-maximization for pLSI with MapReduce
[DDGR07]
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Datasets

• Movielens
http://www.grouplens.org/node/12

• Reddit
http://bit.ly/redditdata

• CU “million songs”
http://labrosa.ee.columbia.edu/millionsong/

• Yahoo Music KDDcup
http://kddcup.yahoo.com/

• AudioScrobbler
http://bit.ly/audioscrobblerdata

• Delicious
http://bit.ly/deliciousdata

• . . .
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Photo recommendations

http://koala.sandbox.yahoo.com
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Thanks. Questions?2

2hofman@yahoo-inc.com
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