
Recommendation systems1

Jake Hofman

Yahoo! Research

April 4, 2011

1For large data sets
@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 1 / 31

Personalized recommendations

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 2 / 31

Personalized recommendations

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 3 / 31

http://netflixprize.com

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 4 / 31

http://netflixprize.com

http://netflixprize.com/rules

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 5 / 31

http://netflixprize.com/rules

http://netflixprize.com/faq

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 6 / 31

http://netflixprize.com/faq

Netflix prize: results

http://en.wikipedia.org/wiki/Netflix Prize

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 7 / 31

http://en.wikipedia.org/wiki/Netflix_Prize

Netflix prize: results

See [TJB09] and [Kor09] for more gory details.

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 8 / 31

Recommendation systems

High-level approaches:

• Content-based methods
(e.g., wgenre: thrillers = +2.3, wdirector: coen brothers = +1.7)

• Collaborative methods
(e.g., “Users who liked this also liked”)

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 9 / 31

Netflix prize: data

(userid, movieid, rating, date)

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 10 / 31

Netflix prize: data

(movieid, year, title)

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 10 / 31

Recommendation systems

High-level approaches:

• Content-based methods
(e.g., wgenre: thrillers = +2.3, wdirector: coen brothers = +1.7)

• Collaborative methods
(e.g., “Users who liked this also liked”)

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 11 / 31

Collaborative filtering

Memory-based
(e.g., k-nearest neighbors)

Model-based
(e.g., matrix factorization)

http://research.yahoo.com/pub/2859

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 12 / 31

http://research.yahoo.com/pub/2859

Problem statement

• Given a set of past ratings Rui that user u gave item i
• Users may explicitly assign ratings, e.g., Rui ∈ [1, 5] is number

of stars for movie rating
• Or we may infer implicit ratings from user actions, e.g.

Rui = 1 if u purchased i ; otherwise Rui = ?

• Make recommendations of several forms
• Predict unseen item ratings for a particular user
• Suggest items for a particular user
• Suggest items similar to a particular item
• . . .

• Compare to natural baselines
• Guess global average for item ratings
• Suggest globally popular items

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 13 / 31

Problem statement

• Given a set of past ratings Rui that user u gave item i
• Users may explicitly assign ratings, e.g., Rui ∈ [1, 5] is number

of stars for movie rating
• Or we may infer implicit ratings from user actions, e.g.

Rui = 1 if u purchased i ; otherwise Rui = ?

• Make recommendations of several forms
• Predict unseen item ratings for a particular user
• Suggest items for a particular user
• Suggest items similar to a particular item
• . . .

• Compare to natural baselines
• Guess global average for item ratings
• Suggest globally popular items

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 13 / 31

Problem statement

• Given a set of past ratings Rui that user u gave item i
• Users may explicitly assign ratings, e.g., Rui ∈ [1, 5] is number

of stars for movie rating
• Or we may infer implicit ratings from user actions, e.g.

Rui = 1 if u purchased i ; otherwise Rui = ?

• Make recommendations of several forms
• Predict unseen item ratings for a particular user
• Suggest items for a particular user
• Suggest items similar to a particular item
• . . .

• Compare to natural baselines
• Guess global average for item ratings
• Suggest globally popular items

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 13 / 31

k-nearest neighbors

Key intuition:
Take a local popularity vote amongst “similar” users

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 14 / 31

k-nearest neighbors
User similarity

Quantify similarity as a function of users’ past ratings, e.g.

• Fraction of items u and v have in common

Suv =
|Ru ∩ Rv |
|Ru ∪ Rv |

=

∑
i RuiRvi∑

i (Rui + Rvi − RuiRvi)
(1)

Retain top-k most similar neighbors v for each user u

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 15 / 31

k-nearest neighbors
User similarity

Quantify similarity as a function of users’ past ratings, e.g.

• Angle between rating vectors

Suv =
Ru · Rv

|Ru| |Rv |
=

∑
i RuiRvi√∑

i R
2
ui

∑
j R2

vj

(1)

Retain top-k most similar neighbors v for each user u

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 15 / 31

k-nearest neighbors
Predicted ratings

Predict unseen ratings R̂ui as a weighted vote over u’s neighbors’
ratings for item i

R̂ui =

∑
v RviSuv∑

v Suv
(2)

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 16 / 31

k-nearest neighbors
Practical notes

We expect most users have nothing in common, so calculate
similarities as:

for each item i :
for all pairs of users u, v that have rated i :

calculate Suv (if not already calculated)

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 17 / 31

k-nearest neighbors
Practical notes

Alternatively, we can make recommendations using an item-based
approach [LSY03]:

• Compute similarities Sij between all pairs of items

• Predict ratings with a weighted vote R̂ui =
∑

j RujSij/
∑

j Sij

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 17 / 31

k-nearest neighbors
Practical notes

Several (relatively) simple ways to scale:

• Sample a subset of ratings for each user (by, e.g., recency)

• Use MinHash to cluster users [DDGR07]

• Distribute calculations with MapReduce

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 17 / 31

Matrix factorization

Key intuition:
Model item attributes as belonging to a set of unobserved “topics

and user preferences across these “topics”

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 18 / 31

Matrix factorization
Linear model

Start with a simple linear model:

R̂ui = b0︸︷︷︸
global average

+ bu︸︷︷︸
user bias

+ bi︸︷︷︸
item bias

(3)

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 19 / 31

Matrix factorization
Linear model

For example, we might predict that a harsh critic would score a
popular movie as

R̂ui = 3.6︸︷︷︸
global average

+ −0.5︸︷︷︸
user bias

+ 0.8︸︷︷︸
item bias

(3)

= 3.9 (4)

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 19 / 31

Matrix factorization
Low-rank approximation

Add an interaction term:

R̂ui = b0︸︷︷︸
global average

+ bu︸︷︷︸
user bias

+ bi︸︷︷︸
item bias

+ Wui︸︷︷︸
user-item interaction

(5)

where Wui = Pu · Qi =
∑

k PukQik

• Puk is user u’s preference for topic k

• Qik is item i ’s association with topic k

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 20 / 31

Matrix factorization
Loss function

Measure quality of model fit with squared-loss:

L =
∑
(u,i)

(
R̂ui − Rui

)2
(6)

=
∑
(u,i)

([PQ]ui − Rui)
2 (7)

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 21 / 31

Matrix factorization
Optimization

The loss is non-convex in (P,Q), so no global minimum exists

Instead we can optimize L iteratively, e.g.:

• Alternating least squares: update entire matrix P, holding Q
fixed, and vice-versa

• Stochastic gradient descent: update individual rows Pu and
Qi for each observed Rui

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 22 / 31

Matrix factorization
Alternating least squares

L is convex in P (Q fixed), so take partials and solve linear system
for updates:

0 =
∂L
∂P

→ P̂ = RQ
[
QTQ

]−1
(8)

0 =
∂L
∂Q

→ Q̂ = RTP
[
PTP

]−1
(9)

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 23 / 31

Matrix factorization
Stochastic gradient descent

Alternatively, we can avoid inverting matrices by taking steps in
the direction of the negative gradient for each observed rating:

Pu ← Pu − η
∂L
∂Pu

= Pu +
(
Rui − R̂ui

)
Qi (10)

Qi ← Qi − η
∂L
∂Qi

= Qi +
(
Rui − R̂ui

)
Pu (11)

for some step-size η

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 24 / 31

Matrix factorization
Practical notes

Several ways to scale:

• Distribute matrix operations with MapReduce [GHNS11]

• Parallelize stochastic gradient descent [ZWSL10]

• Expectation-maximization for pLSI with MapReduce
[DDGR07]

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 25 / 31

Datasets

• Movielens
http://www.grouplens.org/node/12

• Reddit
http://bit.ly/redditdata

• CU “million songs”
http://labrosa.ee.columbia.edu/millionsong/

• Yahoo Music KDDcup
http://kddcup.yahoo.com/

• AudioScrobbler
http://bit.ly/audioscrobblerdata

• Delicious
http://bit.ly/deliciousdata

• . . .

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 26 / 31

http://www.grouplens.org/node/12
http://bit.ly/redditdata
http://labrosa.ee.columbia.edu/millionsong/
http://kddcup.yahoo.com/
http://bit.ly/audioscrobblerdata
http://bit.ly/deliciousdata

Photo recommendations

http://koala.sandbox.yahoo.com

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 27 / 31

http://koala.sandbox.yahoo.com
http://koala.sandbox.yahoo.com

Thanks. Questions?2

2hofman@yahoo-inc.com
@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 28 / 31

hofman@yahoo-inc.com

References I

RM Bell, Y Koren, and C Volinsky.
The bellkor 2008 solution to the netflix prize.
Statistics Research Department at AT&T Research, 2008.

AS Das, M Datar, A Garg, and S Rajaram.
Google news personalization: scalable online collaborative
filtering.
page 280, 2007.

R Gemulla, PJ Haas, E Nijkamp, and Y Sismanis.
Large-scale matrix factorization with distributed stochastic
gradient descent.
2011.

JL Herlocker, JA Konstan, LG Terveen, and JT Riedl.
Evaluating collaborative filtering recommender systems.
ACM Transactions on Information Systems, 22(1):5–53, 2004.

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 29 / 31

References II

T Hofmann.
Latent semantic models for collaborative filtering.
ACM Transactions on Information Systems, 22(1):89–115,
2004.

Yehuda Koren, Robert Bell, and Chris Volinsky.
Matrix factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

Yehuda Koren.
The bellkor solution to the netflix grand prize.
pages 1–10, Aug 2009.

G Linden, B Smith, and J York.
Amazon. com recommendations: Item-to-item collaborative
filtering.
IEEE Internet computing, 7(1):76–80, 2003.

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 30 / 31

References III

A Toscher, M Jahrer, and RM Bell.
The bigchaos solution to the netflix grand prize.
2009.

M. Zinkevich, M. Weimer, A. Smola, and L. Li.
Parallelized stochastic gradient descent.
In Neural Information Processing Systems (NIPS), 2010.

@jakehofman (Yahoo! Research) Recommendation systems April 4, 2011 31 / 31

